簡易檢索 / 詳目顯示

研究生: 郭禮銘
Li-Ming Kuo
論文名稱: 新穎聚芳香醚碸固態電解質與隔離膜應用於鋰金屬電池
Novel polymer electrolytes and membranes based on Poly(arylene ether sulfone)s for lithium metal batteries
指導教授: 黃炳照
Bing-Joe Hwang
口試委員: 黃炳照
Bing-Joe Hwang
蘇威年
Wei-Nien Su
陳崇賢
Chorng-Shyan Chern
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 103
中文關鍵詞: 聚芳香醚碸隔離膜固態高分子電解質鋰金屬電池
外文關鍵詞: Poly(arylene ether sulfone)s, membranes, solid polymer electrolytes, lithium metal batteries
相關次數: 點閱:293下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

In this study, poly(arylene ether)sulfones (PAES) based polymers have been synthesized and used as separators and solid polymer electrolytes for lithium metal batteries. Phase inversion methods were carried out to cast porous polymer membranes. This separators exhibit non-flammability and high electrochemical stability of > 6 V (vs. Li/Li+), proving this material as an interesting candidate for electrolytes and membranes in lithium-ion batteries (LIB).
In order to use PAES polymers as polymer electrolyte membranes (salt in polymer blends), a plasticizer was necessary; due to its high glass transition temperatures (Tg) (201 °C). Lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) was added in polyethylene oxide (PEO) with different plasticizers, such as poly(ethylene glycol) dimethyl ether (PEG-DME) and succinonitrile (SN) to form a conductive membrane. Furthermore, the effect of those plasticizers were further investigated to select the proper plasticizer for PAES-based membranes. It turned out, that PAES polymers display the highest ionic conductivity in combination with 75wt% of PEG-DME. To further decrease the Tg and increase the ionic conductivity of the membrane, three different synthesis approaches were carried out, by tailoring the PAES backbone with PEO. The resultant co-polymers are end-cap PAES-PEOMe, linear PAES-PEO and comb shaped PAES-PEOMe. All of them result in reduced Tg (72 °C, 51 °C, 55 °C respectively) and also maintain the high thermal stability of the PAES completely (up to ~400 °C).


In this study, poly(arylene ether)sulfones (PAES) based polymers have been synthesized and used as separators and solid polymer electrolytes for lithium metal batteries. Phase inversion methods were carried out to cast porous polymer membranes. This separators exhibit non-flammability and high electrochemical stability of > 6 V (vs. Li/Li+), proving this material as an interesting candidate for electrolytes and membranes in lithium-ion batteries (LIB).
In order to use PAES polymers as polymer electrolyte membranes (salt in polymer blends), a plasticizer was necessary; due to its high glass transition temperatures (Tg) (201 °C). Lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) was added in polyethylene oxide (PEO) with different plasticizers, such as poly(ethylene glycol) dimethyl ether (PEG-DME) and succinonitrile (SN) to form a conductive membrane. Furthermore, the effect of those plasticizers were further investigated to select the proper plasticizer for PAES-based membranes. It turned out, that PAES polymers display the highest ionic conductivity in combination with 75wt% of PEG-DME. To further decrease the Tg and increase the ionic conductivity of the membrane, three different synthesis approaches were carried out, by tailoring the PAES backbone with PEO. The resultant co-polymers are end-cap PAES-PEOMe, linear PAES-PEO and comb shaped PAES-PEOMe. All of them result in reduced Tg (72 °C, 51 °C, 55 °C respectively) and also maintain the high thermal stability of the PAES completely (up to ~400 °C).

Abstract I Acknowledgment II Table of Contents III List of Figure VI List of Table X Chapter 1: Introduction and Background 1 1.1. Introduction 1 1.2. Lithium-ion battery 2 1.2.1. Component 4 1.2.2. Working Principle 5 1.3. Lithium metal battery 6 Chapter 2: Literature Review and Theory 8 2.1 Poly(arylene ether sulfone)s polymer 8 2.2 Polymer electrolyte 13 2.2.1 Inorganic Solid Polymer Electrolytes 15 2.2.2 Solid Polymer electrolyte 17 2.2.3 Composite Solid Electrolytes 24 2.3 Ionic conductivity 26 2.4 Cation transference number 28 Chapter 3: Experimental Section 30 3.1 List of equipment 30 3.2 List of chemical 31 3.3 Samples Preparation 32 3.3.1 Porous membrane preparation 32 3.3.2 Solid polymer electrolyte preparation 34 3.3.3 Electrode preparation 35 3.3.4 Assembly of lithium symmetric cells 36 3.4 Measurement Techniques 36 3.4.1 Scanning electron microscopy (SEM) 37 3.4.2 Thermal gravimetric analysis (TGA) 38 3.4.3 Differential scanning calorimetry (DSC) 40 3.4.4 Nuclear magnetic resonancespectroscopy (NMR) 41 3.5 Electrochemical Characterization 42 3.5.1 Linear sweep voltammetry (LSV) 42 3.5.2 Ionic conductivity 43 3.5.3 Li+ transference number 44 3.6 Synthesis 45 3.6.1 Synthesis of 6FPAES 45 3.6.2 Synthesis of 6FPAES-xHQ-OH 46 3.6.3 Synthesis of monomethoxy polyethylenglycol chloride (Cl-PEG-OMe) 48 3.6.4 Synthesis of 6FPAES-xHQ-yPEG-OMe 49 3.6.5 Synthesis of 6FPAES-27wt%PEO 51 3.6.6 Synthesis of 6FPAES-α/ω-PEG-OMe 53 Chapter 4: Results and discussion 54 4.1 Separators based on Poly(arylene ether sulfone)s 54 4.1.1 Solubility of 6FPAES polymer 54 4.1.2 Morphology of 6FPAES membranes microporous structure 55 4.1.3 Flammability test of 6FPAES membranes 59 4.1.4 Investigation of the oxidative stability of 6FPAES-based porous membranes 60 4.2 The effect of different plasticizers on the performance of PEO-based polymer electrolytes 61 4.2.1 Investigation of the ionic conductivity of PEO-based membranes with different plasticizers 61 4.3.2 Li+ transference number 63 4.2.2Investigation of the oxidative stability of PEO-based membranes with different plasticizers 66 4.3 Solid polymer electrolytes based on PAES and PAES derivatives 68 4.3.1 Ionic conductivity of PAES-LiTFSI with plasticizer 68 4.3.2 Thermal properties of PAES and PAES derivatives 74 Chapter 5 Conclusion 78 Chapter 6 Outlook 79 Reference 80

[1] Fergus, J. W. ,Ceramic and Polymeric Solid Electrolytes for Lithium-Ion Batteries", J. Power Sources 195, 4554–4569 (2010)
[2] Quartarone, E., Mustarelli, P., Electrolytes for Solid-State Lithium Re-chargeable Batteries: Recent Advances and Perspectives, Chem. Soc. Rev. 40, 2525–2540 (2011).
[3] Shim, J., Kim, D.-G., Kim, H. J., Lee, J. H. & Lee, J.-C. Polymer Compo-site Electrolytes Having Core−Shell Silica Fillers with Anion-Trapping Boron Moiety in the Shell Layer for All-Solid-State Lithium-Ion Batteries, ACS Appl. Mater. Interfaces 7, 7690–7701 (2015).
[4] Armand, M. The History of Polymer Electrolytes. Solid State Ionics 69, 309–319 (1994).
[5] D. Aurbach & Y. Cohen, ‘The application of atomic force microscopy for the study of Li deposition processes, Journal of The Electrochemical Society 143, 3525 (1996)
[6] P.G. Bruce, S.A. Freunberger, L.J. Hardwick & J.-M. Tarascon, Li-o2 and li-s batteries with high energy storage, Nature Materials 11, 19 (2012)
[7] M.S. Whittingham, ‘History, evolution, and future status of energy storage, Proceedings of the IEEE 100, 1518 (2012)
[8] D. Aurbach, E. Zinigrad, Y. Cohen & H. Teller, ‘A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid elec-trolyte solutions, Solid State Ionics 148, 405 (2002)
[9] R.R. Chianelli, Microscopic studies of transition metal chalcogenides, Journal of Crystal Growth 34, 239 (1976)
[10] L. Gireaud, S. Grugeon, S. Laruelle, B. Yrieix & J.-M. Tarascon, Lithium metal stripping/plating mechanisms studies: A metallurgical approach, Electrochemistry Communications 8, 1639 (2006)
[11] C. Monroe & J. Newman, The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces, Journal of The Electrochemical So-ciety 152, A396 (2005)
[12] M.S. Whittingham, Electrical Energy Storage and Intercalation Chemistry, Science, 192, 1126 (1976)
[13] J.Yamaki, M. Wakihara and O. Yamamoto, Lithium ion batteries Funda-mentals and Performance (1998).
[14] K. Mizushima, P. C. Jones, P. J. Wiseman and J. B. Goodenough, Materi-als Research Bulletin, 15, 783-789 (1980).
[15] R. Yazami and P. Touzain, A reversible graphite-lithium negative electrode for electrochemical generators, J. Power Source, 9,365 (1983)
[16] H. D. Yoo, E. Markevich, G. Salitra, D. Sharon, and D. Aurbach, On the challenge of developing advanced technologies for electrochemical energy storage and conversion, Materials Today, 17, 3,110 (2014).
[17] Xu,K., Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries, Chem Rev, 114, 11503 (2014)
[18] J.M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature, 414, 359 (2001).
[19] B. Liu, J.-G. Zhang, W. Xu, Advancing Lithium Metal Batteries, Joule, 2 833 (2018).
[20] J.M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature, 414, 359 (2001).
[21] Wu Xu, J. Wang, F. Ding, X. Chen, E. Nasybulin, Y. Zhangad, J. Zhang, Lithium metal anodes for rechargeable batteries, Energy Environ. Sci., 7, 513 (2014).
[22] B. Zornoza, S. Irusta, C. Tellez, J. n. Coronas, Mesoporous Silica Sphere_ Polysulfone Mixed Matrix Membranes for Gas Separation, Langmuir, 25 5903 (2009).
[23] H. Susanto, M. Ulbricht, Characteristics, performance and stability of poly- ether sulfone ultrafiltration membranes prepared by phase separation method using different macromolecular additives, J. Membr. Sci, 327, 125 (2009).
[24] S. Vico, B. Palys, C. Buess-Herman, Hydration of a Polysulfone Ani-on-Exchange Membrane Studied by Vibrational Spectroscopy, Langmuir, 19 3282 (2003).
[25] J. Yang, Q. Li, J. O. Jensen, C. Pan, L.N. Cleemann, N.J. Bjerrum, R. He, Phosphoric acid doped imidazolium polysulfone membranes for high tem-perature proton exchange membrane fuel cells, J. Power Sources, 205, 114 (2012).
[26] P. M. Hergenrother, B. J. Jensen, S. J. Havens, “Poly(arylene ethers)” Polymer, 29, 358 (1988).
[27] H. D. Nguyen, G. T. Kim, J. L. Shi, E. Paillard, P. Judeinstein, S. Lyonnard, D. Bresser, C. Iojoiu, Nanostructured multi-block copolymer single-ion conductors for safer high-performance lithium batteries, Energ Environ Sci, 11, 3298 (2018).
[28] H. F. Lee, M. Killer, B. Britton, Y. Wu, H. D. Nguyen, C. Iojoiu, S. Holdcroft, Fuel Cell Catalyst Layers and Membrane-Electrode Assemblies Containing Multiblock Poly(arylene ether sulfones) Bearing Perfluorosulfonic Acid Side Chains, J Electrochem Soc, 165, 891 (2018).
[29] L. Assumma, C. Iojoiu, R. Mercier, S. Lyonnard, H. D. Nguyen, E. Planes, Synthesis of partially fluorinated poly(arylene ether sulfone) multiblock copolymers bearing perfluorosulfonic functions, J Polym Sci Pol Chem, 53, 1941 (2015)
[30] J. Ahn, H. Lee, T. H. Yang, C. S. Kim, B. Bae, Synthesis and characterization of multiblock sulfonated poly(arylene ether sulfone) membranes with different hydrophilic moieties for application in polymer electrolyte membrane fuel cell, J Polym Sci Pol Chem, 52, 2947 (2014).
[31] N. Li, C. Wang, S. Y. Lee, C. H. Park, Y. M. Lee, M. D. Guiver, Enhancement of proton transport by nanochannels in comb-shaped copoly(arylene ether sulfone)s, Angew Chem Int Edit , 50, 9158 (2011).
[32] L. Assumma, H. D. Nguyen, C. Iojoiu, S. Lyonnard, R. Mercier, E. Espuche, Effects of Block Length and Membrane Processing Conditions on the Morphology and Properties of Perfluorosulfonated Poly(arylene ether sulfone) Multiblock Copolymer Membranes for PEMFC, Acs Appl Mater Inter, 7, 13808 (2015).
[33] S. G. Feng, Y. M. Shang, X. F. Xie, Y. Z. Wang, J. M. Xu, Synthesis and characterization of crosslinked sulfonated poly(arylene ether sulfone) membranes for DMFC applications, J Membrane Sci, 335, 13 (2009).
[34] Y. H. Qi, J. F. Ding, M. Day, J. Jiang, C. L. Callender, Cross-linkable highly halogenated poly(arylene ether ketone/sulfone)s with tunable refractive index: Synthesis, characterization and optical propertiesPolymer, 47, 8263. (2006).
[35] W. Wan, Y. Z. Meng, Q. Zhu, S. C. Tjong, A. S. Hay, Synthesis and characterization of soluble poly(ether imide)s based on 2,2’-bis(4-aminophenoxy)-9,9’-spirobifluorene, Polymer, 44, 575. (2003)
[36] Z. G. Xue, D. He, X. L. Xie, Poly(ethylene oxide)-based electrolytes for lithium-ion batteries, J Mater Chem A, 3, 19218. (2015).
[37] Y. P. R. Ting, L. F. Hancock, Preparation of Polysulfone/Poly(ethylene oxide) Block Copolymers, Macromolecules, 29, 7619 (1996).
[38] H. W. Kim, H. B. Park, Gas diffusivity, solubility and permeability in polysulfone–poly(ethylene oxide) random copolymer membranes, J Membrane Sci, 372, 116 (2011).
[39] X. Z. Gu, Y. B. Kuang, X. X. Guo, H. H. Fang, Z. H. Ni, Synthesis and drug release properties of poly(ethylene oxide) segmented polysulfone copolymers, J Control Release, 127, 267 (2008).
[40] Q. W. Lu, J. H. Fang, J. Yang, G. W. Yan, S. S. Liu, J. L. Wang, A novel solid composite polymer electrolyte based on poly(ethylene oxide) segmented polysulfone copolymers for rechargeable lithium batteries, J Membrane Sci, 425, 105 (2013).
[41] R. Chen, W. Qu, X. Guo, L. Liab and F. Wuab, The pursuit of solid-state electrolytes for lithium batteries: from comprehensive insight to emerging horizons. Mater. Horiz, 3, 487-516 (2016).
[42] Y. Wang et al., Design principles for solid-state lithium superionic conductors. Nat Mater, 14, 1026-1031 (2015).
[43] P. G. Bruce, and A. R. West, The AC conductivity of polycrystalline LISICON, LI2+2XZN1-XGEO4, and a model for intergranular constriction resisrances. J. Electrochem. Soc. 130, 662-669 (1983).
[44] H. Aono, E. Sugimoto, Y. Sadaoka, N. Imanaka, and G. Adachi, Ionic-conductivity of solid electrolytes base on lithium titanium phosphate. J. Electrochem. Soc. 137, 1023-1027 (1990)
[45] Y. Inaguma et al., High ionic-conductivity in lithium lanthanum titanate. Solid State Commun. 86, 689-693 (1993).
[46] R. Murugan, V. Thangadurai, and W. Weppner, Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew. Chem.-Int. Edit. 46, 7778-7781 (2007).
[47] X. H. Yu, J. B. Bates, G. E. Jellison, and F. X. Hart, A stable thin-film lithium electrolyte: Lithium phosphorus oxynitride. J. Electrochem. Soc. 144, 524-532 (1997).
[48] N. Kamaya et al., A lithium superionic conductor. Nat Mater 10, 682-686 (2011).
[49] Y. Kato et al., High-power all-solid-state batteries using sulfide superionic conductors. Nature Energy 1, 16030 (2016).
[50] A. Vlad, N. Singh, C. Galande, and P. M. Ajayan, Design Considerations for Unconventional Electrochemical Energy Storage Architectures. Advanced Energy Materials 5, 1402115 (2015).
[51] Z. Xue, D. He, X. Xie, Poly(ethylene oxide)-based electrolytes for lithi-um-ion batteries, J. Mater. Chem. A, 3 ,19218 (2015).
[52] F. M. Gray, Solid polymer electrolytes: fundamentals and technological applications, Scotland, UK: VIH Publishers, Inc. (1991).
[53] X. Andrieu et al., Solid polymer electrolytes based on statistical poly(ethylene oxide-propylene oxide) copolymers. Electrochimica Acta 40, 2295 (1995).
[54] A. S. Gozdz, J. M. Tarascon, P. C. Warren, C. N. Schmutz, and F. K. Shokoohi, Proceedings of the Fifth International Symposium on Polymer Electrolyte. Uppsala, Sweden, 11 (1996).
[55] L. Fan, S. Wei, S. Li, Q.i Li, and Y. Lu, Recent Progress of the Solid-State Electrolytes for High-Energy Metal-Based Batteries. Adv. Energy Mater. 8, 1702657 (2018).
[56] H. R. Allcock et al., Polyphosphazenes with etheric side groups - prospec-tive biomedical and solid electrolyte polymers. Macromolecules 19, 1508-1512 (1986).
[57] Y. Li, C. Fan, J. Zhang and X. Wu, A promising PMHS/PEO blend polymer electrolyte for all-solid state lithium ion batteries, Dalton Trans., 14932-14937, (2018).
[58] M. D. Tikekar, S. Choudhury, Z. Tu and L. A. Archer, Nat. Energy, 1, 16114. (2016).
[59] R. Bouchet, S. Maria, R. Meziane, A. Aboulaich1, L. Lienafa, J. P. Bonnet, T. N. T. Phan, D. Bertin, D. Gigmes, D. Devaux, R. Denoyel and M. Armand, Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries. NATURE MATERIALS, 12, 452 (2013).
[60] L. Porcarelli, A. S. Shaplov, M. Salsamendi, J. R. Nair, Y. S. Vygodskii, D, Mecerreyes and C, Gerbaldi, Single-Ion Block Copoly(ionic liquid)s as Electrolytes for All-Solid State Lithium Batteries. ACS Appl. Mater. Interfaces. 8, 10350 (2016).
[61] S.Srivastava, J.L. Schaefer, Z. Yang, Z. Tu and L. A. Archer. 25th Anniversary Article: Polymer–Particle Composites: Phase Stability and Applications in Electrochemical Energy Storage. Adv. Mater. 26, 201 (2014).
[62] J. Zheng and Y.-Y. Hu, New Insights into the Compositional Dependence of Li-Ion Transport in Polymer−Ceramic Composite Electrolytes. ACS Appl. Mater. Interfaces, 10, 4113 (2018).
[63] M.J.C.Plancha, C. A. C. Sequeira, and D. M. F. Santos, Polymer electro-lytes. UK: Woodhead Publishing Limited, (2010).
[64] Evans J, Vincent CA, Bruce PG, Electrochemical measurement of trans-ference numbers in polymer electrolytes. Polymer, 28(13),2324 (1987)
[65] Iowa-State-University, How the SEM Works, (2018).
[66] Nanoscience, How an SEM Works, (2018).
[67] Gabbott, P. (Ed.). Principles and applications of thermal analysis. John Wiley Sons (2008).
[68] Leys, J. Broadband dielectric spectroscopy of confined liquid crystals and hydrogen bonded liquids, (2007).
[69] A. Kumar, R. K. Gupta, Fundamentals of Polymers. McGraw-Hill Compa-nies, Inc., USA. (1998).
[70] R. Junga, M. Metzgera, F. Maglia, C. Stinnerb, H. A. Gasteigera, Oxygen Release and Its Effect on the Cycling Stability of LiNixMnyCozO2 (NMC) Cathode Materials for Li-Ion Batteries, J. Electrochem. Soc. 164, 7, 1361 (2017).
[71] L. R. A. K. Bandara, M. A. K. L. Dissanayake and B. E. Mellander,
Electrochim. Acta, 43, 1447 (1998).
[72] H. Wang, D. Im, D. J. Lee, M. Matsui, Y. Takeda, O. Yamamoto and
N. Imanishi, J. Electrochem. Soc.,160, 728 (2013).
[73] L.-Z. Fan and J. Maier, Electrochem. Commun.,, 8, 1753-1756 (2006)
[74] R. He and T. Kyu, Effect of Plasticization on Ionic Conductivity Enhance-ment in Relation to Glass Transition Temperature of Crosslinked Polymer Electrolyte Membranes, Macromolecules, 49 (15), 5637 (2016).
[75] P.J. Alarco, Y. Abu-Lebdeh, A. Abouimrane, M. Armand, Nat. Mater. 3, 476, (2004)
[76] Y. Zhao, Z. Huanga, S. Chen, B Chena, J. Yang, Q. Zhang, F. Ding, Y. Chenc, X. Xu, A promising PEO/LAGP hybrid electrolyte prepared by a simple method for all-solid-state lithium batteries. Solid State Ionics, 295, 65-71(2016).

無法下載圖示 全文公開日期 2024/01/28 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE