簡易檢索 / 詳目顯示

研究生: 王岳昇
Yue-Sheng Wang
論文名稱: 以電滲法改質水泥基膠結材研究
Modified Cement-Based Cementitious Materials Using Electroosmotic Technique
指導教授: 陳君弢
Chun-Tao Chen
口試委員: 黃然
Ran Huang
張大鵬
Ta-Peng Chang
陳君弢
Chun-Tao Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 127
中文關鍵詞: 電滲透水泥砂漿混凝土抗壓強度水化
外文關鍵詞: electromoisis, mortar, concrete, compressive strength, hydration
相關次數: 點閱:227下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究探討運用電滲透工法於水泥砂漿時的抗壓強度變化。試驗首先嘗試不同的電流大小,通電時間採用2‒8小時,模具長度採用100×100×300 mm,水灰比固定為0.6,養護天數則為7天。找出最佳通電條件後,再於後續試驗使用其他不同的試驗參數,由中找出強度最高且具有變化的最佳配比,最後利用微觀分析來探討其強度變化的原因。研究結果發現,通電電流為0.05 A且通電時數為8小時的試體,其強度變化最明顯,呈現兩端強度較中間高的現象且整體強度皆高於未通電試體。此外亦發現,通電時數越久,強度不一定會提高。通電起始時間以試體灌置完成後馬上通電最具強度變化,整體強度也最高,於終凝後通電則最差。當試體長度越短時,強度變化最明顯,而試體長度增加時,強度變化則不一致,可能與離子相對移動距離有關。此外,本研究也探討實際運用於混凝土的成效。在純砂漿時,其效果最佳,強度最高且具變化,而粗細粒料3:1時,其效果最差,強度較低,推測係因配比緻密,導致電滲效果不佳。當養護天數增加時,試體仍具有強度變化,因此電滲的效果於長期仍有效。就微觀分析而言,大部分的試體的強度變化與水泥的水化有關,越高的Ca(OH)2及非晶質比例對應較高的強度,因此推測通電造成鈣離子與氫氧根離子的移動,同時影響了Ca(OH)2與C-S-H的生成。


This study explored the changes of the compressive strength in the mortar subjected to the electromoisis. The prelimeary tests were conduced to explore the effect of the charging current and the charging time ranging from 2 to 8 hours. The specimens were prepared by the mold of 100×100×300 mm, w/c of 0.6, and curing time of 7 days. The following experiments were conducted to test other parameters and to find the optimum mix with the highest strength varied with the location in the specimen. Finally, the microanalyses were conducted to explain the strength changes. Results showed that those subjected to current of 0.05A for 8 hours had the highest strength changes, strength higher at two ends, and strength higher than the plain in average. Results also showed that the strengths were not always increased with the charging time. The optimum time to start changing was the time right after the specimens were casted in the mold, and those charged specimens had the highest strength changes and strength in average. The ones subjected to the charging beginning after the setting had the lowest strength. The high strength changes were also found in those specimens with shorter length. With longer length, the strength did not show a clear tendency. It was likely that the strength change was associated with the relative migration distance of the ions. The electromoisis did not work well in concrete. The best mix was the one with mortar and the worst mix was the one, in which the ratio of the coarse aggregates to the fine aggregates was 3:1. It was likely that the dense mix restrain the migration of the ions. When the curing time was increased, the effect of the electromoisis remained, suggesting that the electromosis was effective to change the strength of mortar even in the long term. By microanalysis, it was found that the strength was related with hydration. Those with higher Ca(OH)2 and amouphous parts had higher strength. It was likely that the charging migrated the calcium and hydroxial ions, thereby influencing the formation of Ca(OH)2 and C-S-H.

摘要 I ABSTRACT III 致謝 IV 總目錄 V 表目錄 VIII 圖目錄 XI 第一章 緒論 1 1.1 研究動機 1 1.2 研究目的 1 1.3 研究方法及流程 2 第二章 文獻回顧 4 2.1 前言 4 2.2 電力滲透現象 4 2.3 電力滲透原理(ELECTRO-OSMOSIS THEORY) 5 2.3.1電力滲透流量理論 5 2.3.2電力滲透壓密理論 6 2.4 電力滲透發展歷史 7 2.5 電滲透化學灌漿原理 8 2.6 電滲透化學灌漿發展歷史 9 2.7 水泥 9 2.7.1 水泥的組成 10 2.7.2 水泥水化行為 10 2.7.3 水泥中的C-S-H膠體 13 2.8 電滲於水泥基材料上的應用 14 2.9 綜合討論 14 第三章 試驗規劃 19 3.1 試驗變數 19 3.1.1 變數說明 19 3.1.2 編碼說明 21 3.2 試驗材料 21 3.3 試驗配比 23 3.4 試驗設備 23 3.5 試體製作 26 3.6 試驗方法 27 3.6.1 電滲 27 3.6.2 力學性質試驗 27 3.6.3 凝結時間 28 3.6.4 吸水率 29 3.6.5 X光繞射分析 (XRD) 30 3.6.6 掃描式電子顯微鏡分析(SEM) 31 第四章 試驗結果與討論 50 4.1 電流大小之影響 50 電流0.01 A 50 電流0.025 A 50 電流0.05 A 51 電流0.1 A 51 電流0.15 A 51 電流0.2 A 51 4.2 純水泥漿試體 52 4.3 通電時間之影響 54 4.4 通電起始時間之影響 55 4.5 模具長度之影響 56 4.6 粗細粒料比例之影響 59 4.7 養護天數之影響 60 4.8 添加高嶺土材料之影響 60 第五章 結論與建議 86 5.1 結論 86 5.2 建議 87 參考文獻 88 附錄A 先期試驗 90 附錄B 電壓對通電時間關係圖 91 附錄C 試體溫度關係圖 95 附錄D SEM圖 102 附錄E 吸水率 105 附錄F 電路圖 107

[1] Alshawabkeh, A. and T. C. Sheahan (2003). "Soft soil stabilisation by ionic injection under electric fields." Proceedings of the Institution of Civil Engineers-Ground Improvement 7(4): 177-185.
[2] Asavadorndeja, P. and U. Glawe (2005). "Electrokinetic strengthening of soft clay using the anode depolarization method." Bulletin of engineering geology and the environment 64(3): 237.
[3] Banerjee, S. and V. Vitayasupakorn (1984). "Appraisal of electro-osmotic oedometer tests." Journal of Geotechnical Engineering 110(8): 1007-1023.
[4] Basile, F., S. Biagini, G. Ferrari and M. Collepardi (1987). "Effect of the gypsum state in industrial cements on the action of superplasticizers." Cement and Concrete Research 17(5): 715-722.
[5] Casagrande, I. L. (1949). "Electro-osmosis in soils." Geotechnique 1(3): 159-177.
[6] Chien, S.-C., C.-Y. Ou and Y.-C. Lee (2010). "A novel electroosmotic chemical treatment technique for soil improvement." Applied clay science 50(4): 481-492.
[7] Esrig, M. and J. P. Gemeinhardt (1967). "Electrokinetic stabilization of an illitic clay." Journal of Soil Mechanics & Foundations Div 92(SM5, Proc Paper 490).
[8] Gray, D. H. (1970). "Electrochemical hardening of clay soils." Geotechnique 20(1): 81-93.
[9] Helmholtz, H. (1879). " Studien uber electrische grenzschichten." Annalen Der Physik Und: 337-382.
[10] Johnston, I. and R. Butterfield (1977). "A laboratory investigation of soil consolidation by electro-osmosis." Australian Geomechanics Journal 7(1): 21-32.
[11] Lo, K., K. Ho and I. Inculet (1991). "Field test of electroosmotic strengthening of soft sensitive clay." Canadian Geotechnical Journal 28(1): 74-83.
[12] Mindess, S. and J. F. Young (1981). Concrete. Englewood CliffsLondon: 30-65.
[13] Mitchell James, K. (1993). "Fundamentals of soil behavior.", (Wiley; 3 edition)
[14] Olphen, H. V. (1977). "An introduction to clay colloid chemistry, for clay technologists, geologists, and soil scientists." An introduction to clay colloid chemistry, for clay technologists, geologists, and soil scientists.(2nd edition).
[15] Ozkan, S., R. Gale and R. Seals (1999). "Electrokinetic stabilization of kaolinite by injection of Al and PO43− ions." Proceedings of the Institution of Civil Engineers-Ground Improvement 3(4): 135-144.
[16] Paczkowska, E., B. Larysz, R. Rzeuski, A. Karbicka, R. Jałowiński, Z. Kornacewicz‐Jach, M. Ratajczak and B. Machaliński (2005). "Human hematopoietic stem/progenitor‐enriched CD34+ cells are mobilized into peripheral blood during stress related to ischemic stroke or acute myocardial infarction." European journal of haematology 75(6): 461-467.
[17] Quincke, G. (1861). "Ueber die Fortführung materieller Theilchen durch strömende Elektricität." Annalen der Physik 189(8): 513-598.
[18] Redaelli, E., F. Torabian Isfahani, F. Lollini, H. Wu and L. Bertolini (2018). "Effect of electroosmotic flow of aqueous suspension of nanosilica on the properties of carbonated concrete." Materials and Corrosion 69(1): 89-97.
[19] Reuss, F. (1809). "Sur un nouvel effet de l’électricité galvanique" Mémoires de la Société Impériale des Naturalistes de Moscou 2. 327-337.
[20] Shang, J. Q., K. Y. Lo and K. M. Huang (1996). "On factors influencing electro-osmotic consolidation." Geotechnical Engineering 27(2): 23-36.
[21] Terzaghi, K., R. B. Peck and G. Mesri (1996). Soil mechanics in engineering practice, John Wiley & Sons.
[22] von Smoluchowski, M. (1903). "Contribution à la théorie de l'endosmose électrique et de quelques phénomènes corrélatifs." Bull. Akad. Sci. Cracovie. 8: 182-200.
[23] 鍾春富 (1996). 軟弱土層電力滲透穩定研究. 碩士論文, 國立成功大學土木工程學系.

無法下載圖示 全文公開日期 2024/01/29 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE