簡易檢索 / 詳目顯示

研究生: 銀徽
Hui - Yin
論文名稱: 以超啟發式法則進行鋼筋混凝土結構最佳化設計
Using Metaheuristics to Facilitate the Design of Reinforced Concrete Structures
指導教授: 楊亦東
I-Tung Yang
口試委員: 林祐正
Yu-cheng Lin
歐昱辰
Yu-Chen Ou
楊智斌
Jyh-Bin Yang
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 118
中文關鍵詞: 鋼筋混凝土進化演算法粒子群演算法最佳化
外文關鍵詞: RC
相關次數: 點閱:146下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 傳統的鋼筋混凝土設計中,許多的變數都是由工程師的經驗去給定初始值,例如柱直徑、梁深、配筋量等等。由於這些變數之間是息息相關的,而工程師的設計通常趨於保守,設計往往也未必能有效率的使各個材料間發揮其效能。
      舉例來說,增加鋼筋量可以增加鋼筋混凝土柱子的強度,但是相對於混凝土,鋼筋的價格昂貴許多,若無適當的設計,鋼筋量一樣,柱子的強度無法相對提升,或者造成浪費。工程師在設計的時候不易在廣大的搜尋空間中找尋適合的設計參數,若用人力計算相當費時費力,因此本研究主要目的將鋼筋量、柱子直徑、混凝土強度以及鋼筋配比作為最佳化之變數,以求取最經濟且符合結構強度規定之混凝土斷面設計。研究方法為基因演算法以及粒子群演算法。
      本研究提出之兩套演算法應用在美國AASHTO協會橋樑設計範例之橋柱以及ACI規範下之鋼筋混凝土梁最佳化結構設計;目標為取得符合設計規範且較為經濟之設計。本研究亦比較基因演算法以及粒子群演算法的求解效果。


    In the traditional reinforce concrete design, a lot of initial values of parameters are set based on the engineers' experience, such as diameter of the pillar, deep of beam, amount of reinforcing bar, etc. Since the design parameters affect the performance and the engineers usually take a conservative approach, the overall design may not necessarily be optimal.

    For example, increasing the reinforcing bar amount can raise strength of RC pillar. Opposite to concrete, reinforcing bars are much expensive. Without appropriate design, even using the same number of reinforcing bars can not raise the strength. It is not economical. It is not easy to find appropriate design parameters in the large search space. This study considers diameter of pillar, number of reinforcing bars, concrete’s strength and reinforcing bar strength as a parameter to calculate economical design parameters and conforms with the design rules. The proposed methods include Genetic Algorithm and Particle Swarm Optimization Algorithm.

    This study is to apply two algorithms to find the optimal beam design which is based on ACI design rule, and a pillar design which is based on AASHTO design rule. The goal is to find the optimal design parameters and conforms with the design rules. This research also compares the result of two models.

    第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 3 1.4 論文架構 5 第二章 文獻回顧 7 2.1 鋼筋混凝土概論 7 2.1.1 設計規範 8 2.1.2 載重 9 2.1.3 鋼筋混凝土結構設計方法 10 2.2 結構分析之最佳化問題概論 12 2.3 結構分析最佳化工具 13 2.3.1 非線性規劃法 14 2.3.2 基因演算法相關文獻回顧 17 2.3.3 粒子群演算法相關文獻回顧 19 2.4 小結 19 第三章 基本理論介紹 21 3.1 鋼筋混凝土梁設計 21 3.1.1 鋼筋混凝土破壞模式 22 3.1.2 Whitney等值矩形應力分佈 23 3.2 鋼筋混凝土柱設計 23 3.2.1 箍筋 24 3.2.2 圍束應力 24 3.3 基因演算法 27 3.3.1 基因演算法摘要 27 3.3.2 基因演算法發源 27 3.3.3 基因演算法之演化機制 28 3.3.4 基因演算法的演算步驟 30 3.3.5 基因演算法之特色 33 3.4 粒子群演算法介紹 34 3.4.1 基本理論介紹 34 3.4.2 粒子群演算法組成要素與參數 36 3.4.3 粒子群演算法演算步驟 37 3.5 基因演算法和粒子群演算法之比較 40 第四章 最佳化模式介紹 41 4.1 最佳化模型之基本假設 41 4.2 目標函數與束制條件 41 4.2.1 鋼筋混凝土梁之束制條件 42 4.3 最佳化模型分析流程 47 4.3.1 鋼筋混凝土單筋矩形梁 47 4.3.2 鋼筋混凝土圓形橋柱 55 4.4 小結 62 第五章 結果分析 63 5.1 成本計算 63 5.2 鋼筋混凝土矩形梁案例分析 64 5.2.1 鋼筋混凝土梁之設計變數 65 5.3 圓形混凝土橋柱案例分析 67 5.4 小結 75 5.5 假設檢定 75 5.6 敏感度分析 77 第六章 結論與建議 78 6.1 結論 78 6.2 後續研究 78 參考文獻 80 附錄 84 附錄A. 84 附錄B. 88 附錄C. 91 附錄D. 95 附錄E. 98

    中文文獻
    1. 林明勝,「鋼筋混凝土」,翰昇土木建築環工文教機構,台北(2005)。

    2. 楊宗碩,「運用有限單元法與梯度投影法於彈性結構體之構件尺寸最佳設計」,碩士論文,國立中興大學,台中 (1982)。

    3. 藍志浩,「考慮動態反應束制及關連性離散變數之結構最佳化設計」,碩士論文,國立中央大學,中壢(2005)。

    4. 洪立德,「遺傳演算法於結構最佳化設計之限制條件處理研究」,碩士論文,國立台灣大學,台北(1999)。

    5. 洪彥欽,「基因演算法則用於結構最佳化設計之應用」,碩士論文,國立交通大學,新竹(1994)。

    6. 楊哲男,「應用遺傳演算法於鋼筋混凝土構件之最低成本設計」,碩士論文,國立屏東科技大學,屏東(2001)。

    7. 陳士毓,「多重進化遺傳演算法於結構最佳化設計應用」,碩士論文,國立台灣大學,台北(2001)。

    8. 莊玟珊,「PSO-SA混合搜尋法與其他結構最佳化設計之應用」,碩士論文,國立中央大學,中壢(2006)。

    9. 財團法人台灣營建研究院,「營建物價」,11月(2008)。

    10. 楊亦東,「計算智慧於工程上之應用」課程資料,(2008)。

    11. 歐昱辰,「鋼筋混凝土設計」課程資料,(2009)。

    12. 徐義人,工程機率統計學,國立編譯館主編,華泰文化事業公司印行第268-301頁(1997)。

    英文文獻
    1. Nilson, A. H.; Darwin, D.; and Dolan, C. W., Design of Concrete Structures, 13th Ed. McGraw-Hill. (2004)

    2. Bland, J A and Dawson, G P., Tabu search and design optimization, IEEE Computer-Aided Design, vol. 23, pp. 195–201(1991)

    3. Fourie, P. C., and Groenwold, A. A., Particle swarms in topology optimization, Proc., 4th World Congress of Structural and Multidisciplinary Optimization, Liaoning Electronic Press, Dalian, China, 52–53. (2001)

    4. Fourie, P. C., and Groenwold, A. A., The particle swarm optimization algorithm in size and shape optimization, Struct. Multidiscip. Optim., 23(4), 259–267. (2002)

    5. Hajela, P., Genetic Search -An Approach to the Nonconvex Optimization Problem, AIAA Journal , pp. 1205-1210, Vol.28 , No. 7. (1990)

    6. Bland, J. A., Nonlinear Optimization of Constrained Functions Using Tabu Search, Int. J. Math. Educ.Sci. Technol., 24(5), 741-747.(1993)

    7. Bennage, W. A., and Dhingra, A. K., Optimization of truss topology using tabu search, Int. J. Numer. Methods Eng., 38,4035–4052. (1995)

    8. Holland, J.H.,Adaptation in Natural and Artificial System,University of Michgan Press, Ann Arbor, Mich. (1975)

    9. Goldberg, D.E. ,Genetic Algorithms in search, Optimization and Machine Learning ,Addison-Wesley ,Reading. (1989)

    10. Jenkins,W. M., Towards Strucyural Optimization via the Genetic Algorithms, Computer & structures, Vol.40,No.5,pp.1321-1327 (1991)

    11. Rajeev, S., and Krishnamoorthy, C. S., Discrete Optimization of Structures Using Genetic Algorithms, ASCE Journal of Structural Engineering , Vol.118,No.5,pp.1233-1250(1992)
    12. Lin,C.Y., and Hajela,P., Genetic Algorithms in Optimization Problem with Discrete and Integer Design Variables, Engineering Optimization, Vol.19,pp.309-327 (1992)

    13. Chen, T-Y. and Chen, C.-J., Improvements of Simple Genetic Algorithm in Structural Design, International Journal for Numerical Methods in Engineering, Vol. 40 ,pp.1323-1334(1997)

    14. Eberhart, R.C., and Kennedy, J., A new optimizer using particle swarm theory. Proc. sixth international symposium on Micro Machine and Human Science, Nagoya, Japan, pp.39-43(1995)

    15. Millonas, M. M., Swarms, phase transitions, and collective igence. In C. G. Langton, Ed., Artificial Life III. Addison Wesley, Reading, MA. (1994)

    16. Fourie, P. C. and Groenwold A., A., The particle swarm optimization algorithm in size and shape optimization, Struct. Multidisc optim., Vol. 23, pp. 259−267 (2002)

    17. Schutte, J. F., and Groenwold, A. A., Sizing design of truss structures using particle swarms, Struct. Multidiscip. Optim., 25(4), 261–269. (2003)

    18. Venter, G., and Sobieszczanski-Sobieski, J., Multidisciplinary optimization of a transport aircraft wing using particle swarm optimization, Struct. Multidiscip. Optim., 26(1–2), 121–131. (2004)

    19. Mander, J. B., Priestley, M. J. N., and Park, R., Theoretical Stress-Strain Model for Confined Concrete , J. Struct. Div., ASCE, 114(8), pp.1804(1988a)

    20. William, K. J. and Warnke, E. P., Constitutive Model for the Triaxial Behavior of Concrete., Proceedings, International Association for Bridge and Structural Engineering, Vol. 19, ISMES,Bergamo, Italy, pp. 174 (1975)

    21. ASCE ,Minimum Design Loads for Buildings and Other Structures, ASCE-7-98, American Society of Civil Engineers, Reston, VA. (1998)

    22. ACI ,Buildings Code Requirements for Structural Concrete, ACI -318-02, American Concrete Institute, Farmington Hills, MI. (2002)

    23. Mast, R.; Marsh, L.; Spry, C.; Johnson, S.; Griebenow, R.; Guarre, J.; Wilson, W., Seismic Design of Bridges – Design Example No.1 Two-Span Continuous CIP Concrete Box Bridge, Publication No. FHWA-SA-97-009. (1996)

    QR CODE