簡易檢索 / 詳目顯示

研究生: 林子維
Zi-Wei Lin
論文名稱: 實驗與計算方法於缸內噴油引擎噴油時機之探討
Study of Injection Timing of a GDI Engine Using Experimental and Computational Method
指導教授: 黃榮芳
Rong-Fung Huang
口試委員: 孫珍理
Chen-li Sun
林怡均
Yi-Jiun Lin
張家和
Chir-Ho Chang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 327
中文關鍵詞: 引擎
外文關鍵詞: GDI
相關次數: 點閱:206下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用實驗與計算方法於一部四閥單缸四行程250 c.c.引擎作缸內噴油流場診測。實驗部份,將供油系統改裝成電子燃油噴射系統,供油方式改為燃油缸內直噴(gasoline direct injection, GDI),主要分析噴油嘴於進氣行程噴油時,在不同的噴油時機下所造成的油氣混合之影響。實驗部份可分為兩個部份,第一部份為分析噴油嘴之物理特性,並將所得到的開啟延遲、關閉延遲時間及噴油嘴質量流率的數據套用在模擬計算中。第二部份為缸內噴油實驗,此部份是運用高速攝影機拍攝噴油嘴於進氣行程噴油時,到壓縮行程結束,燃油液滴衍化之過程。並利用不同的噴油時機與不同點火角度找出較佳的油氣混合情況。計算模擬部分是使用商業套裝計算流體動力學(computational fluid dynamics, CFD)軟體STAR-CD探討在有、無燃油噴射的狀況下,於進氣和壓縮行程期間分析缸內氣流繞著缸徑軸上的滾轉運動以及缸內燃油噴射之噴霧流場與氣流運動交互作用後的結構與衍化,並藉由循環渦度滾轉比及SMD等量化指標,定量分析流場結構與引擎性能間的相關性。所得到的實驗與計算模擬結果顯示,噴油時機於CA = 25.2o ATDC時,液滴分佈較CA = 85.2o ATDC混合更均勻。


    The fuel injection timing during intake stroke of a four-stroke motorcycle engine cylinder has been studied through experiment and computer simulation. Several factors which influence the injection timing and fuel-air mixing were obtained during experiment. The injection time delay and injector characteristics were obtained from experimental results and were used as reference in the computer simulation. Using a high speed CCD camera, instantaneous evolution of mixing of air and fuel were investigated inside the engine cylinder. The quality of air fuel mixture was compared when the fuel was injected at two different settings of crank angle namely: CA = 25.2o ATDC and CA = 85.2o ATDC. Computer simulation was aided by a CFD software STAR-CD to understand the mechanics during “no-spray” and “spray” situation inside the engine cylinder. The flow motion generated by such computer simulation was quantified by SMD and dimensionless tumble ratio. Results from experiments and computer simulations both showed that the injection done at CA = 25.2o ATDC was more homogeneous than CA = 85.2o ATDC.

    摘要 Abstract 誌謝 目錄 符號索引 表圖索引 第一章 緒論 1.1 研究動機 1.2 文獻回顧 1.3 研究目的與方法 第二章 實驗設備、儀器與方法 2.1 實驗構想與方法 2.1.1 引擎改裝 2.1.2 引擎潤滑油路系統改裝 2.1.3 實驗引擎動力來源 2.2 缸外噴油實驗設備 2.2.1 電子噴射裝置之控制系統 2.2.2 數據擷取系統 2.2.3 電子微量天秤 2.3 缸內噴油實驗設備 2.3.1 缸內噴油引擎型式與汽缸頭規格 2.3.2 缸內噴油取像相位與座標定義 2.3.3 傳動系統 2.3.4 編碼器 2.4 實驗儀器 2.4.1 高速攝影系統 2.5物理參數定義 2.5.1 活塞位移量及速率 2.5.2 空燃比 第三章 計算模擬之模型與方法 3.1 計算流力軟體的簡介 3.2 統御方程式 3.2.1 紊流模式 3.2.2 液滴分裂模型 3.2.3 液滴與壁面交互作用模型 3.3 數值方法 3.3.1 離散化方程式 3.3.2 PISO解法理論 3.3.3 收斂標準 3.4 數值模擬 3.4.1 計算網格 3.4.2 邊界條件與初始條件 3.4.3 取像相位與座標定義 3.5 物理參數定義 3.5.1 滾轉比 3.5.2 液霧的平均粒徑(SMD) 第四章 缸外與缸內噴油實驗結果 4.1 缸外噴油嘴之供油壓力分析 4.2 缸外噴油量分析 4.3 缸外噴油嘴之噴油延遲特性 4.3.1 缸外噴油訊號及延遲特性分析 4.3.2 缸外模擬引擎轉速對噴油延遲時間特性分析 4.3.3 量化分析 4.4 缸內噴油可視化 4.4.1 噴油時機為CA = 25.2o ATDC 4.4.1.1 正面對稱面缸內噴油滾轉運動與衍化過程 4.4.1.2 正面非對稱面(z = 15.5 mm)缸內噴油滾轉運動與衍化過程 4.4.1.3 正面非對稱面(z = - 15.5 mm)缸內噴油滾轉運動與衍化過程 4.4.1.4 側面對稱面缸內噴油滾轉運動與衍化過程 4.4.1.5 側面非對稱面(z* = 15.5mm)缸內噴油滾轉運動與衍化過程 4.4.1.6 側面非對稱面(z* = - 15.5mm)缸內噴油滾轉運動與衍化過程 4.4.2 噴油時機為CA = 85.2o ATDC 4.4.2.1 正面對稱面缸內噴油滾轉運動與衍化過程 4.4.2.2 正面非對稱面(z = 15.5mm)缸內噴油滾轉運動與衍化過程 4.4.2.3 正面非對稱面(z = - 15.5mm)缸內噴油滾轉運動與衍化過程 4.4.2.4 側面對稱面缸內噴油滾轉運動與衍化過程 4.4.2.5 側面非對稱面(z* = 15.5mm)缸內噴油滾轉運動與衍化過程 4.4.2.6 側面非對稱面(z* = - 15.5mm)缸內噴油滾轉運動與衍化過程 第五章 冷流場Tumble motion的衍化計算結果 5.1 未噴油之缸內氣流衍化過程 5.1.1 正面對稱面缸內流場結構與衍化過程 5.1.2 正面非對稱面(z = 15.5mm)缸內流場結構與衍化過程 5.1.3 正面非對稱面(z = - 15.5mm)缸內流場結構與衍化過程 5.1.4 側面對稱面缸內流場結構與衍化過程 5.1.5 側面非對稱面(z* = 15.5mm)缸內流場結構與衍化過程 5.1.6 側面非對稱面(z* = - 15.5mm)缸內流場結構與衍化過程 5.2 噴油嘴安裝位置與參數設定 5.3 噴油時機為CA = 25.2o ATDC之缸內氣流衍化過程 5.3.1 正面對稱面缸內流場結構與衍化過程 5.3.2 正面非對稱面(z = 15.5mm)缸內流場結構與衍化過程 5.3.3 正面非對稱面(z = - 15.5mm)缸內流場結構與衍化過程 5.3.4 側面對稱面缸內流場結構與衍化過程 5.3.5 側面非對稱面(z* = 15.5mm)缸內流場結構與衍化過程 5.3.6 側面非對稱面(z* = - 15.5mm)缸內流場結構與衍化過程 5.4 噴油時機為CA = 85.2o ATDC之缸內氣流衍化過程 5.4.1 正面對稱面缸內流場結構與衍化過程 5.4.2 正面非對稱面(z = 15.5mm)缸內流場結構與衍化過程 5.4.3 正面非對稱面(z = - 15.5mm)缸內流場結構與衍化過程 5.4.4 側面對稱面缸內流場結構與衍化過程 5.3.5 側面非對稱面(z* = 15.5mm)缸內流場結構與衍化過程 5.4.6 側面非對稱面(z* = - 15.5mm)缸內流場結構與衍化過程 5.5 未噴油與加入噴油之量化分析 5.5.1 正面對稱面之循環平均滾轉比 5.5.2 正面非對稱(z = 15.5mm)面之循環平均滾轉比 5.5.3 正面非對稱(z = - 15.5mm)面之循環平均滾轉比 5.5.4 整體量化分析 第六章 冷流場噴霧與油氣濃度分佈的衍化計算結果 6.1 缸內噴霧衍化過程 6.1.1 噴油時機為CA = 25.2o ATDC之噴霧衍化 6.1.1.1 正面之缸內噴霧衍化過程 6.1.1.2 側面之缸內噴霧衍化過程 6.1.2 噴油時機為CA = 85.2o ATDC之噴霧衍化 6.1.2.1 正面之缸內噴霧衍化過程 6.1.2.2 側面之缸內噴霧衍化過程 6.2 噴油時機在CA = 25.2o ATDC之油氣濃度分佈衍化 6.2.1正面對稱面油氣濃度分佈衍化過程 6.2.2 正面非對稱面(z = 15.5mm)油氣濃度分佈衍化過程 6.2.3 正面非對稱面(z = - 15.5mm)油氣濃度分佈衍化過程 6.2.4 側面對稱面油氣濃度分佈衍化過程 6.2.5 側面非對稱面(z* = 15.5mm)油氣濃度分佈衍化過程 6.2.6 側面非對稱面(z* = - 15.5mm)油氣濃度分佈衍化過程 6.3 噴油時機在CA = 85.2o ATDC之油氣濃度分佈衍化 6.3.1正面對稱面油氣濃度分佈衍化過程 6.3.2 正面非對稱面(z = 15.5mm)油氣濃度分佈衍化過程 6.3.3 正面非對稱面(z = - 15.5mm)油氣濃度分佈衍化過程 6.3.4 側面對稱面油氣濃度分佈衍化過程 6.3.5 側面非對稱面(z* = 15.5mm)油氣濃度分佈衍化過程 6.3.6 側面非對稱面(z* = - 15.5mm)油氣濃度分佈衍化過程 6.3.7 噴油時機分析於點火角度之濃度比較 6.3.7.1 正面對稱面上濃度分析 6.3.7.2 側面對稱面上濃度分析 6.4 缸內平均SMD變化 6.5液滴蒸發率變化 第七章 結論與建議 7.1結論 7.2建議 參考文獻

    [1]Mayer, H., “Air Pollution in Cities,” Atmospheric Environment, Vol. 33, October 1999, pp. 4029-4036.
    [2]李進修, 王漢英, 汽機車引擎設計與分析技術, 國立清華大學出版社, 2005.
    [3]Heywood, J. B., Internal Combustion Engine Fundamentals, McGraw-Hill, New York, 1988.
    [4]Kent,J.C.,Mikulec,A.,Rimal,L.,Adamczyk,A.A.,Mueller,S.R.Stein,R.A.,and Warren,C.C.,“Observations on the Effects of Intake-Generated Swirl and Tumble on Combustion Duration,”SAE Trasaction, vol. 98, pp. 2042-2053, SAE892096, (1989)
    [5]Omori, S., Iwachido, K., Motomochi, M., and Hirako, O., “Eddect of Intake Port Flow Pattern on the In-Cylinder Tumbling Air Flow in Muti-Valve S.I. Engines,” SAE Paper 910477, (1991)
    [6]Endres, H., Neusser, H. J., and Wurms, R., “Influence of Swirl and Tumble on Economy and Emissions of Muti Valve S.I. Engine,” SAE Paper 920516, (1992)
    [7]Heywood, J. B., Internal Combustion Engine Fundamentals, McGraw-Hill, New York, 1988.
    [8]Heywood, J. B., “Fluid Motion within the Cylinder of Internal Combustion Engine-The 1986 Freeman Scholar Lecture.” Journal of Fluids Engineering, Transactions of the ASME, Vol. 109, No. 1, 1987, pp. 3-35.
    [9]Han, Z., Reitz, R. D., “Effects of Injection Timing on Air-Fuel Mixing in a Direct-Injection Spark-Ignition Engine,” Journal of Engine, SAE Transactions-Section 3, Vol. 106, 1997, pp. 848-860, SAE 970625.
    [10]Han, Z., Fan, L., and Reitz, R. D., “Multidimensional Modeling of Spray Atomization and Air-Fuel Mixing in a Direct-Injection Spark-Ignition Engine,”Journa of Engine, SAE Transactions-Section 3, Vol. 106, 1997, pp. 1423-1441, SAE 970884.
    [11]Matsumura, E., Tomita, T., Takeda, K., Furuno, S., and Senda, J., “Analysis of Visualized Fuel Flow inside the Slit Nozzle of Direct Injection SI Gasoline Engine,” Journal of Engine, SAE Transactions-Section 3, Vol. 112, 2003, pp. 238-245, SAE 2003-01-0060.
    [12]Tanaka, Y., Takano, T., Sami, H., Sakai, K., and Osumi, N., “Analysis on Behaviors of Swirl Nozzle Spray and Slit Nozzle Spray in Relation to DI Gasoline Combustion,” Journal of Engine, SAE Transactions-Section 3, Vol. 112, 2003, pp. 218-235, SAE 2003-01-0059.
    [13]Papageorgakis, G., Assanid, D. N., “Optimizing Gaseous Fuel-Air Mixing in Direct Injection Engines Using an RNG Based k-ε Model,” Journal of Engine, SAE Transactions-Section 3, Vol. 107, 1998, pp. 82-107, SAE 980135.
    [14]Tomoda, T., Sasaki, S., Sawada, D., Saito, A., and Sami, H. “Development of Direct Injection Gasoline Engine-Study of Stratified Mixture Formation,” Journal of Engine, SAE Transactions-Section 3, Vol. 106, 1997, pp. 759-766, SAE 970539.
    [15]Harada, J., Tomita, T., Mizuno, H., Mashiki, Z., and Ito, Y., “Development of Direct Injection Gasoline Engine,” Journal of Engine, SAE Transactions-Section 3, Vol. 106, 1997, pp. 767-776, SAE 970540.
    [16]Ohsuga, M., Shiraishi, T. Nogi, T., Nakayama, Y., and Sukegawa, Y., “Mixture Preparation for Direct-Injection SI Engine,” Journal of Engine, SAE Transactions-Section 3, Vol. 106, 1997, pp. 794-801, SAE 970542.
    [17]Rotondi, R., Bella G.,“Gasoline direct injection spray simulation ,
    ”International Journal of Thermal sciences 45 (2006) 168-179
    [18]Arcoumanis, C., Godwin, S. N., and Kim, J. W., “Effect of Tumble Strength on Combustion and Exhaust Emissions in a Single-Cylinder, Four-Valve, Spark-Ignition Engine,” Journal of Engines, SAE Transactions-Section 3, Vol. 107, 1998, pp. 1547-1562, SAE 981044.
    [19]Iwamoto, Y., Noma, K., Nakayama, O., Yamauchi, T., and Ando, H., “Development of Gasoline Direct Injection Engine,” Journal of Engines, SAE Transactions-Section 3, Vol. 106, 1997, pp. 777-793, SAE 970541.
    [20]邱彥凱, 二閥單缸機車引擎的缸內直噴技術發展, 國立台灣科技大學機械工程技術研究所碩士論文, 2008。
    [21]Auriemma, M., Caputo, G., Corcione, F. E., and Valentino, G., “Fluid-Dynamic Analysis of the Intake System for a HDDI Diesel Engine by STAR-CD Code and LDA Technique,” Journal of Engines, SAE Transactions-Section 3, Vol. 112, 2003, pp. 21-28, SAE 2003-01-0002.
    [22]Nonaka, Y., Horikawa, A., Nonaka, Y., Hirokawa, M., and Noda, T., “Gas Flow Simulation and Visualization in Cylinder of Motor-Cycle Engine,” Journal of Engines, SAE Transactions-Section 3, Vol. 113, 2004, pp. 1710-1714, SAE 2004-32-0004.
    [23]Versteeg, H. K. and Malalasekera, W., An Introduction to Computational Fluid Dynamics-The Finite Volume Method, Wiley, New York, 1995.
    [24]Dodge, L. G., 1996 "Fuel preparatio nrequirements for direct-injected spark ignitionengines," SAE Technical Paper, No. 962015.
    [25]劉加陽, 四行程二閥內燃機引擎的氣流特性, 國立台灣科技大學機械工程技術研究所碩士論文, 2007。
    [26]黃志偉, 使用PIV技術診測進氣埠受調制之引擎缸內流場, 國立台灣科技大學機械工程技術研究所碩士論文, 2003。
    [27]楊賀順, 平頂與凹面活塞四閥四行程引擎的缸內流場滾轉運動與紊流衍化:PIV量測技術的開發與應用, 國立台灣科技大學機械工程技術研究所碩士論文, 2004。
    [28]林冠旭, 增強內燃機缸內氣流滾轉運動的方法與診測:計算模擬與PIV實驗量測, 國立台灣科技大學機械工程技術研究所碩士論文, 2006。

    QR CODE