簡易檢索 / 詳目顯示

研究生: 呂曉婷
Lu-hsiao Ting
論文名稱: 新穎離子通道修飾觸媒層於質子交換膜 燃料電池之研究
Study Of Novel Ionic Channel Modified Catalyst Layer For PEMFC
指導教授: 黃炳照
Bing-joe Hwang
口試委員: 林智汶
Lin-chi Wen
蔡大翔
Tsai-dah Shyang
蔡英文
Tsai-ying wen
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 217
中文關鍵詞: 電泳沈積高溫型質子交換燃料電ABPBI
外文關鍵詞: Eletrophoretic deposition, High temperature PEMFC, ABPBI
相關次數: 點閱:207下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    本研究利用改良式之電泳沈積法將離子聚合體(ionomer)沈積於觸媒層中,於其中形成新穎離子通道,藉此增加觸媒層中反應發生的三相區(three-phase region),以提高貴金屬觸媒之利用率,並應用於低溫型與高溫型質子交換膜燃料電池效能之提升。
    首先吾人嘗試將Nafion ionomer沈積於觸媒層中,採用NRE-212為主體的膜電極組(Nafion-based)進行單電池電化學效能測試及分析。藉著改變沈積時間、電池溫度、進氣壓力及氣體流量等參數,以三極式電化學分析技術(vs標準氫電極)進行電化學性能測試,以探討其對於質子交換膜燃料電池效能之影響。研究結果發現,以Nafion ionomer沈積後之觸媒層組成之膜電極組,效能表現都比未經電泳沈積處理為佳;其中在沈積時間為15分鐘時,電池放電效能最好(操作溫度:60 ℃,氣體進料增濕溫度:70 ℃,陽極氫氣及陰極氧氣進料流量:100 ml/min),於電流密度928 mA/cm2時,具有最高電池功率密度為311mW/cm2。反觀未經Nafion ionomer沈積之觸媒層組成之膜電極組,在相同操作條件下,於電流密度720 mA/cm2時,具有最高電池功率密度為217 mW/cm2。另外分別觀察Nafion ionomer於觸媒層中沈積前與沉積後之電極過電位變化,明顯發現電極之過電位有明顯之下降。
    另一方面,於高溫型質子交換膜之研究中,首先以3,4-diaminobenzoic acid (DABA)和5-sulfoisophthalic acid monosodium salt (SIPA-Na)為單體,以NMP為溶劑成功地合成出不同磺化比例之SABPBI-IPA_55、SABPBI_64與SABPBI_73 copolymer;本研究另以4,4-oxydianiline (ODA)、2,2-benzidinedisulfonic acid (BDSA)和1,4,5,8-naphthalenetetracarboxylic dianhydride (NTDA)為單體,以m-cresol為溶劑合成 Sulfonated polyimide (SPI)。所合成之電解質膜皆利用傅立葉轉換紅外光譜儀與元素分析等技術分別鑑定其分子結構與成分等特性。
    另外,於高溫型膜電極組之觸媒層中形成離子通道之研究,則以自製SABPBI-IPA_73為觸媒層之電極漿料與觸媒均勻混合,並製備成觸媒層電極,並以各式不同之ionomer沉積於觸媒層中。其中,以SPI ionomer沉積於觸媒層中形成離子通道之膜電極組具有最佳之效果,於電流密度為870 mA/cm2時,達到最大電池功率密度為260 mW/cm2。並從AC交流阻抗測試結果得知,經由電泳法修飾電極後,觸媒層與電解質間之界面阻力確實降低,顯示此法能有效地提昇電池之性能。


    Abstract
    In this study, the modified electrophoretic deposition (EPD) method is employed for formation of ionic channels in the catalyst layers, which would benefit for the increase of three-phase region as well as better utilization of Pt catalysts. The strategy obviously improves the performance of Proton Exchange Membrane Fuel Cells (PEMFCs).
    Firstly, the Nafion ionomer is deposited into catalyst layer to form the said ionic channels by the modified electrophoresis method. Nafion-based commercial membrane electrode assemblies (MEAs, NRE-212) were employed for the purpose. Single-cell performance and the corresponding properties were characterized with a three-electrode electrochemical cell configuration. The effects of ionomer-deposited time, operation temperature, gas pressure and flow rate of fuel on the performance of PEMFC were discussed. It was found that the performance of MEA shows the best performance with electrodes after ionomer deposition for 15 min. Maximum power densities of 311 mW cm-2 at current densities of 928 mA/cm2 were found at the conditions of operation temperature of 60 ℃, fuel humidification temperature of 70 ℃ , gas pressure of 2 atm and fuel flow rates of 100 ml min-1, which is much better than MEA without ionic channels in the electrode layer (217 mW cm-2). Further the changes of electrode potential (vs SHE) with and without ionic channels indicating that the overpotential of the electrode can be greatly reduced with the formation of ionic channels in the catalyst layers.

    In the study of high-temperature proton exchange membrane, SABPBI-IPA copolymers with various sulfonated ratios were synthesized with 3,4-diaminobenzoic acid (DABA) and 5-sulfoisophthalic acid monosodium salt (SIPA-Na) as the monomers and NMP as the solvent. On the other hand, sulfonated polyimide (SPI) was synthesized with 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTDA) as the monomer and m-cresol as the solvent. The molecular configuration and the composition of these polymers were examined techniques by various tools like FTIR, EA, etc.
    For evaluation the effect of ionic channels in the catalyst layers to the performance of high-temperature PEMFC, the electrodes were prepared by casting the SABPBI-IPA_73/Pt/C slurries on the membrane. Formation of ionic channels in the catalyst layers is preceded with various ionomers, in which SPI ionomer shows the best performance. Maximum power densities of 260 mW cm-2 were achieved at the current densities of 870 mA cm-2. Further the AC-impedance analysis tells the decrease of interfacial resistance between catalyst layer and electrolyte with the formation of ionic channels, indicating its effectiveness toward the performance of PEMFC.

    總目錄 摘要. I Abstract III 誌謝. V 圖目錄 XV 表目錄 XXI 第一章 緒論 1 1.1 前言 1 1.2 燃料電池的發展簡介 2 1.3 燃料電池的種類 5 1.3.1 鹼性燃料電池(alkaline fuel cell, AFC) 5 1.3.2 磷酸燃料電池(phosphoric acid fuel cell, PAFC) 6 1.3.3 熔融碳酸鹽燃料電池(molten carbonate fuel cell, MCFC) 6 1.3.4 固態氧化物燃料電池(solid oxide fuel cell, SOFC) 7 1.4 質子交換膜燃料電池(PEMFC)之工作原理 11 1.4.1 電解質材料與其發展概況 12 1.4.2 電極 14 1.5 膜電極組內之反應機制 15 1.6 研究動機與目的 20 1.7 研究架構 21 第二章 文獻回顧 23 2.1. 質子交換膜內之氫離子傳導機制 23 2.2 質子交換膜的研究 29 2.2.1 Nafion 膜之簡介 29 2.2.2 電解質薄膜之分類 31 2.2.2.1 Nafion膜及Nafion膜之改質系列 31 2.2.2.2 有機高分子電解質膜材系列 32 2.2.2.3 有機/無機混成之電解質薄膜 36 2.3高溫型質子傳導膜 37 2.3.1 聚苯咪唑(Polybenzimidazole,PBI)簡介 38 2.3.1.1 PBI之合成 39 2.3.1.2 PBI在燃料電池上的應用 42 2.3.1.3 PBI (ABPBI)的磺酸化方法 44 2.3.1.4 PBI(ABPBI)於高溫型質子交換膜燃料電池之應用 47 2.4 現有膜電極組的製作方式 49 2.4.1 幾種常見的製備方式 50 2.4.1.1 傳統方法 50 2.4.1.2 真空濺鍍沈積法 51 2.4.1.3 電化學還原法 51 2.4.2 對傳統製備方法的改進 53 2.4.2.1 採用白金觸媒含量適中的Pt/C催化劑 53 2.4.2.2 將白金層濺鍍於觸媒層表面 54 2.4.2.3 觸媒層中Nafion的浸漬量的最適化 55 2.4.2.4 採用性能更好的質子交換膜 58 2.5 電泳沈積法 59 2.5.1 電泳沈積之介紹 59 2.5.2 電泳沉積之動力學 62 2.5.3 電泳沈積於燃料電池之應用 64 第三章 實驗藥品、設備、步驟與原理 67 3.1 實驗藥品 67 3.2 實驗設備與器材 68 3.3 實驗步驟與方法 69 3.3.1 ABPBI與不同磺化比例之SABPBI-IPA copolymer及SPI(ODA-base SPI )之製備 70 3.3.1.1 ABPBI與不同磺化比例之 SABPBI-IPA copolymer之合成 70 3.3.1.2 SPI (ODA-base SPI)之合成方式 73 3.3.2 以傅立葉轉換紅外光譜儀(FTIR)鑑定ABPBI、不同磺化比例之SABPBI-IPA、SPI及ABPBI®膜之結構 75 3.3.2.1 簡介 75 3.3.2.2 實驗步驟 76 3.3.3 元素分析(EA)測試 76 3.3.3.1 簡介 76 3.3.3.2 實驗步驟 77 3.3.4 熱性質分析 77 3.3.4.1 ABPBI®膜熱重分析(TGA) 77 3.3.5 膜電極組之製備 78 3.3.5.1 低溫質子交換膜燃料電池之膜電極組(MEA)製備 78 3.3.5.2 高溫質子交換膜燃料電池之膜電極組(MEA)製備 82 3.3.6 電極表面分析 85 3.3.6.1 掃描式電子顯微鏡(SEM)分析 85 3.3.6.2 能量散射光譜儀(EDS)分析 85 3.3.7 燃料電池放電特性測試 86 3.3.7.1 低溫型(<100 ℃)質子交換膜燃料電池單電池組裝及質子交換膜單電池測試 86 3.3.7.2 高溫型(>100 ℃)質子交換膜燃料電池單電池組裝及質子交換膜單電池測試步驟 89 3.3.8 AC交流阻抗電化學特性測試 94 3.3.8.1 高溫型質子交換膜燃料電池ABPBI® /H3PO4 之交流阻抗分析實驗測試步驟: 101 第四章 結果與討論 103 4.1. 傅立葉紅外線光譜(FTIR)結構鑑定 103 4.1.1 ABPBI和不同磺化比例之SABPBI-IPA copolymer之傅立葉紅外線光譜(FTIR)分析 103 4.1.2 SPI(ODA-base SPI) 傅立葉轉換紅外光譜儀(FTIR)分析 106 4.1.3 ABPBI®膜之傅立葉轉換紅外光譜儀(FTIR)分析 108 4.2 元素分析儀(EA)分析 109 4.2.1 不同磺酸化比例之SABPBI-IPA copolymer與SPI copolymer元素分析(EA)結果 109 4.3 ABPBI®膜熱穩定性分析 110 4.4 電極表面分析 112 4.4.1 低溫型質子交換膜燃料電池之電極製備 112 4.4.1.1 定電流不同沉積時間以Nafion ionomer進行電泳沈積 112 4.4.2 高溫型質子交換膜燃料電池之電極製備 118 4.5 電化學效能分析 122 4.5.1 低溫型質子交換膜之探討 122 4.5.1.1 不同鍍膜時間之碳布進行電泳沈積所造成之影響 122 4.5.1.2 操作溫度對電池性能之影響 128 4.5.1.3 進氣壓力對電池性能之影響 133 4.5.1.4 氣體流量對電池性能之影響 137 4.5.1.5曝氮氣於電池陰極側對電池性能之影響 141 4.5.2高溫型質子交換膜燃料電池Celtec®-P1000質子交換膜燃料電池性能之探討 144 4.5.2.1長時間定電流活化 144 4.5.2.2 操作溫度對電池性能之影響 146 4.5.2.3 曝不同濃度CO下對電池性能之影響 147 4.5.2.4曝氮氣於陰極側對電池性能之影響 149 4.5.2.5 曝氫氣於電池陰極側對電池性能之影響 151 4.5.3 高溫型質子交換膜燃料電池搭配ABPBI® / H3PO4 155 4.5.3.1 使用不同ionomer當觸媒層電極漿料(binder)對性能之影響 155 4.5.3.2 操作溫度對電池性能之影響 159 4.6 交流阻抗分析 164 4.6.1 高溫型質子交換膜燃料電池搭配ABPBI®/H3PO4交流阻抗分析 164 4.6.1.1 以不同ionomer當觸媒層binder對電池阻抗之影響 164 4.6.1.2 電池溫度對阻抗之影響 167 第五章 綜合討論 169 5.1 低溫型質子交換膜之探討 169 5.1.1 不同電泳沈積時間之影響 169 5.1.3 進氣壓力對電池性能之影響 171 5.1.4 氣體流量對電池性能之影響 171 5.2高溫型質子交換膜之探討 172 5.2.1 高溫型質子交換膜(Celtec®-P1000 膜極組)燃料電池 172 5.2.1.1長時間定電流活化 172 5.2.1.2電池溫度對性能之影響 172 5.2.1.3曝不同CO濃度對性能之影響 173 5.2.1.4曝氮氣於電池陰極側對電池性能之影響 173 5.2.1.5曝氫氣於電池陰極側對電池性能之影響 174 5.2.2高溫型質子交換膜燃料電池搭配ABPBI® / H3PO4 174 5.2.2.1使用不同ionomer當觸媒層binder對電池性能之影響 174 第六章 結論 177 第七章 參考文獻 180 圖目錄 Fig. 1-1 Effect of methanol permeability and cell performance on PBI membrane electrode assemble 10 Fig. 1-2 Operation scheme of polymer electrode fuel cell 12 Fig. 1-3 Transport mechanism in membrane 13 Fig. 1-4 Relationship between cell potential and current of proton exchange membrane fuel cell 17 Fig. 1-5 A simplified schematic diagram of the electrode/electrolyte interfacein a fuel cell, illustrating the TPB reaction zones 19 Fig. 1-6 Structure of the research Topic 22 Fig. 2-1 Different forms of proton in water medium 24 Fig. 2-2 Proton conduction in water : mobility of proton 25 Fig. 2-3 Proton hops between two water molecules 26 Fig. 2-4 Proton mobility via a Zundel ion complex 27 Fig. 2-5 Mechanism of proton transport in the membrane 28 Fig. 2-6 Chemical structure of the perfluorosulfonic acid electrolyte 29 Fig. 2-7 Dimensions of water-filled micropores 30 Fig. 2-8 chemical structure of PBI and ABPBI polymer 44 Fig. 2-9 Flowchart of membrane electrode assembly preparation 50 Fig. 2-10 Dependence of the MEA performance on different Pt catalyst loading in Pt/C and sputtering 50 nm Pt layer 54 Fig. 2-11 Effect of impregnating Nafion into the CL on the performance of the MEA 57 Fig. 2-12 Effect of the content of Nafion impregnatinginto the CL on the performance of the MEA 58 Fig. 2-13 Polarization curves of the PEMFC with different thickness of Nafion membrane 59 Fig. 2-14 Schematic of EPD kinetics 64 Fig. 2-15 Schematic of EPD cell 66 Fig. 3-1 Flow chart of synthesis SABPBI-IPA 70 Fig. 3-2 Reaction equation of SABPBI-IPS 71 Fig. 3-3 Flowchart of synthesis SABPBI-IPA SPI (ODA-base SPI) 73 Fig. 3-4 Reaction equation of SPI 74 Fig. 3-5 Flowchart of electrophoretic deposition 80 Fig. 3-6 Equipment of electrophoretic deposition 81 Fig. 3-7 Fundamental concept of membrane electrode assemble 82 Fig. 3-8 Schematic illustration of parallel flow-field pattern 88 Fig. 3-9 Schematic illustration of the cell stack assembly of a PEMFC single cell 88 Fig. 3-10 Single cell module with three electrode cell set-up 89 Fig. 3-11 Double serpentine flow-field pattern for anode side 92 Fig. 3-12 3-path serpentine flow-field pattern 92 Fig. 3-13 Single serpentine flow-field pattern 93 Fig. 3-14 Single cell utilized under high temperature 93 Fig. 3-15 Schematic illustration of the relationship between alternative current and potential signal at frequency 94 Fig. 3-16 Schematic illustration of total impedance calculatio 96 Fig. 3-17 equivalent circuit model 98 Fig. 3-18 (a) Nyquist plot (b) Bode plot 100 Fig. 4-1 FTIR spectrum of ABPBI 104 Fig. 4-2 FTIR spectrum of ABPBI, SABPBI-IP_55, SABPBI-IP_64, and SABPBI-IP_73 105 Fig. 4-3 FTIR spectrum of SPI 107 Fig. 4-4 TGA of ABPBI and ABPBI•3.2 H3PO4 111 Fig. 4-5 Relationship between potential and different deposition times 114 Fig. 4-6 Surface morphology and composition of catalyst layer without electrophoretic deposition 114 Fig. 4-7 Surface morphology and composition of catalyst layer at different deposition times (A)10min (B)15min (C) 30min (D)60min 115 Fig. 4-8 The cross-section morphology of catalyst layer at different deposition times (A) 0min (B) 10min (C) 30min (D) 60min 116 Fig. 4-9 C/F ratio with various depth at different deposition times 117 Fig. 4-10 Relationship between weight of deposited nafion and different deposition times 117 Fig. 4-11 Surface morphology and composition of catalyst layer with various sulfonate ratio(A)SABPBI-IPA_55(B) SABPBI-IPA_64 (C) SABPBI-IPA_73 120 Fig. 4-12 Surface morphology and composition of PEMFC electrode as-prepared: (A) GDE1-ABPBI_NEPD 121 Fig. 4-13 Polarization curve of anode and cathode on NRE-212 MEA at different deposition times 125 Fig. 4-14 Polarization curve of NRE-212 MEA at different deposition times 126 Fig. 4-15 Power density of NRE-212 MEA at different deposition times 127 Fig. 4-16 Polarization curve of anode and cathode on NRE-212 MEA at different operation temperatures 130 Fig. 4-17 Polarization curve of NRE-212 MEA at different operation temperatures 131 Fig. 4-18 Power density of NRE-212 MEA at different operation temperatures 132 Fig. 4-19 Polarization curve of the anode and cathode on NRE-212 MEA at different gas pressures 134 Fig. 4-20 Polarization curve of NRE-212 MEA on different gas pressures 135 Fig. 4-21 Power density of NRE-212 MEA on different gas pressures 136 Fig. 4-22 Polarization curve of anode and cathode on NRE-212 MEA at different flow rates 138 Fig. 4-23 Polarization curve of NRE-212 MEA at different flow rates 139 Fig.4-24 Power density of NRE-212 MEA at different flow rates 140 Fig. 4-25 Polarization curve of cathode and anode on NRE-212 MEA at different purge N2 times 142 Fig.4-26 Polarization curve of cathode on NRE-212 MEA at different purge N2 times 143 Fig.4-27 Cell voltage of Celtec®-P1000 MEA during activation process 145 Fig. 4-28 Polarization curve of Celtec®-P1000 MEA at different operation temperatures 146 Fig. 4-29 Polarization curve of Celtec®-P1000 MEA under different CO concentrations at operation temperature of 160℃and 200℃ 148 Fig. 4-30 Polarization curve of Celtec®-P1000 MEA at different purge N2 times 150 Fig. 4-31 Polarization curve of Celtec®-P1000 MEA at different purge H2 times 152 Fig. 4-32 Polarization curve of Celtec®-P1000 MEA at fixed purge H2 time and different purge N2 times 154 Fig. 4-33 Polarization curve of MEA consist of eletrode as-prepared and ABPBI®•3.2 H3PO4 156 Fig. 4-34 Power density of MEA consist of electrode as-prepared and ABPBI®•3.2 H3PO4 157 Fig. 4-35 Relationship between cell voltage and time for ABPBI®•3.2 H3PO4 MEA at 0.2 mA/cm2 160 Fig. 4-36 Polarization curve of ABPBI®•3.2 H3PO4 MEA at different operation temperatures 161 Fig.4-37 Power density of ABPBI®•3.2H3PO4 MEA at different operation temperatures 162 Fig. 4-38 Nyquist plots of MEA consist of electrode as-prepared and ABPBI®•3.2 H3PO4 166 Fig. 4-39 Nyquist plots of MEA consist of electrode as-prepared and ABPBI®•3.2 H3PO4 at different temperatures 167 表目錄 Table 1-1 The overview of fuel cell history 4 Table 1-2 Characterizations of various fuel cells 9 Table 2-1 Effect of methanol permeability and cell performance on PBI membrane electrode assembly 35 Table 2-2 Methodes of PBI synthesis 41 Table 2-3 Methodes of sulfonated PBI synthesis 46 Table 2-4 Prepartion of membrane electrode assembly by using PBI as a binder 48 Table 3-1 The various of SABPBI and IPA molar ratio 72 Table 3-2 Preparation of home made electrodes 84 Table 3-3 General of three kind electric element 97 Table 4-1 Infrared spectra of polybenzimidazoles 106 Table 4-2 FTIR Assignments for Sulfonated Polyimide 107 Table 4-3 Element analysis of SABPBI-IPA copolymer with various sulfonic ratio and SPI 110 Table 4-4 Composition of PEMFC electrode as-prepared and parameters of EPD method 119 Table 4-5 Current density of cathode on NRE-212 MEA at different purge N2 times 144 Table 4-6 Current density of Celtec®-P1000 MEA at different operation temperatures 147 Table 4-7 Current density of Celtec®-P1000 MEA under different CO centrations at operation temperatures of 160℃and 200℃ 149 Table 4-8 Current density of Celtec®-P1000 MEA at different purge N2 times 151 Table 4-9 Current density of Celtec®-P1000 MEA at different purge H2 times 153 Table 4-10 Maximum power density and open circuit voltage of MEA consist of electrode as-prepared and ABPBI®•3.2 H3PO4 158 Table 4 -11 Maximum power density of ABPBI®•3.2H3PO4 MEA at different operation temperatures 163 Table 4-12 AC-Impendence analysis of MEA consist of electrode as-prepared and ABPBI®•3.2 H3PO4 166 Table 4-13 AC-Impedence analysis of MEA consist of electrode as-prepared and ABPBI®•3.2 H3PO4 at different temperatures 168

    第七章 參考文獻
    1. 黃鎮江,燃料電池,全華科技圖書公司,台北 (2003)
    2. 吳滄琪,磺酸化高分子於燃料電池質子交換膜製備之應用,元智大學,台北 (2003)
    3. 鄭耀宗; 徐耀升,燃料電池技術進展的現況:燃料電池論文集 (1989)
    4. 詹世弘,二十一世紀之星-燃料電池,燃料電池研討會 (2000)
    5. 高志勇,磺酸化磷睛環聚合物電解質之合成及其性質之研究,工業材料,111-119 (2003)
    6. 許義政,磺酸化聚二醚酮奈米複合質子交換膜之研究,長庚大學(2004)
    7. Yen, S. P. S.; Narayanan, S. R.; Halpert, G.; Graham, E.; Yavrouian, A., Polymer material for electrolytic membranes in fuel cells, 1998.
    8. 經濟部能源科技研究發展計畫報告
    9. Rho, Y. W.; Srinivasan, S.; Kho, Y. T., Mass Transport Phenomena in Proton Exchange Membrane Fuel Cells Using O2/He, O2/Ar, and O2/N2 Mixtures, Journal of the Electrochemical Society 1994, 141 (8), 2089-2096.
    10. 李軒誠,質子交換膜燃料電池研究-MEA的製程與應用,國立中山大學 (2000)
    11. O'Hayre, R.; Barnett, D. M.; Prinz, F. B., A Mathematical Model and Experimental Investigations for Fuel Cells, Journal of The Electrochemical Society, 2005, 152 (2), 439-444.
    12. Eikerling, M.; Kornyshev, A. A.; Kuznetsov, A. M.; Ulstrup, J.; Walbran, S., Mechanisms of Proton Conductance in Polymer Electrolyte Membranes, The Journal of Physical Chemistry B, 2001, 105 (17), 3646-3662.
    13. Spohr, E.; Commer, P.; Kornyshev, A. A., Enhancing Proton Mobility in Polymer Electrolyte Membranes: Lessons from Molecular Dynamics Simulations, The Journal of Physical Chemistry, B 2002, 106 (41), 10560-10569.
    14. Kornyshev, A. A.; Kuznetsov, A. M.; Spohr, E.; Ulstrup, J., Kinetics of Proton Transport in Water, The Journal of Physical Chemistry B, 2003, 107 (15), 3351-3366.
    15. Tung, S.-P.; Hwang, B.-J., High proton conductive glass electrolyte synthesized by an accelerated sol-gel process with water/vapor management, Journal of Membrane Science, 2004, 241 (2), 315-323.
    16. 邱志豪,聚苯咪唑合成及薄膜性質,元智大學 (2004)
    17. Schultz, T.; Zhou, S.; Sundmacher, K., Current Status of and Recent Developments in the Direct Methanol Fuel Cell, Chemical Engineering & Technology, 2001, 24 (12), 1223-1233.
    18. Higuchi, Y.; Terada, N.; Shimoda, H.; Hommura, S. U. S. Patent application, 2001.
    19. Watanabe, M.; Uchida, H.; Seki, Y.; Emori, M., The Electrochemical Society Meeting, 1994, 946-947.
    20. Antonucci, P. L.; Aric, A. S.; Cret, P.; Ramunni, E.; Antonucci, V., Investigation of a direct methanol fuel cell based on a composite Nafion/silica electrolyte for high temperature operation, Solid State Ionics, 1999, 125 (1-4), 431-437.
    21. Kauranen, P. S.; Skou, E., Methanol permeability in perfluorsulfonate proton exchange membranes at elevated temperatures, J. Appl. Electrochem., 1996, 26, 909-917.
    22. Narayanan, S. R.; Kindler, A.; Jeffries Nakamura, B.; Chum, W.; Frank, H.; Smart, M.; Valdez, T. L.; Surampudi, S.; Halpert, G., Annu. Battery Conf. Appl. Adv., 1996, 113.
    23. Jung, D. H.; Lee, C. H.; Kim, C. S.; Shin, D. R., Performance of a direct methanol polymer electrolyte fuel cell, Journal of Power Sources, 1998, 71, 169-173.
    24. Rikukawa, M.; Sanui, K., Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers, Progress in Polymer Science, 2000, 25 (10), 1463-1502.
    25. Donoso, P.; Gorecki, W.; Berthier, C.; Defendini, F.; Poinsignon, C.; Armand, M. B., NMR, conductivity and neutron scattering investigation of ionic dynamics in the anhydrous polymer protonic conductor PEO(H3PO4)x), Solid State Ionics, 1988, 28-30 (Part 2), 969-974.
    26. Fiona, M. G., Polymer Electrolytes. RSC Materials Monographs, UK, 1997.
    27. Daniel, M. F.; Desbat, B.; Cruege, F.; Trinquet, O.; Lassegues, J. C., Solid state protonic conductors: Poly(ethylene imine) sulfates and phosphates, Solid State Ionics, 1988, 28-30 (Part 1), 637-641.
    28. Lassegues, J. C.; Scoolmann, D.; Trinquet, O., Proton conducting acid/polymer blends, Solid State Ionics, 1992, 51, 443.
    29. Rodriguez, D.; Jegat, C.; Trinquet, O.; Grondin, J.; Lassègues, J. C., Proton conduction in poly (acrylamide)-acid blends, Solid State Ionics, 1993, 61 (1-3), 195-202.
    30. Gupta, P. N.; Singh, K. P., Characterization of H3PO4 based PVA complex system, Solid State Ionics, 1996, 86-88 (Part 1), 319-323.
    31. Vargas, M. A.; Vargas, R. A.; Mellander, B. E., More studies on the PVAl+H3PO2+H2O proton conductor gels, Electrochimica Acta, 2000, 45 (8-9), 1399-1403.
    32. Wu, H.; Wang, Y., A methanol barrier polymer electrolyte membrane in direct methanol fuel cells, J. New. Mat. Electrochem. Systems, 2002, 5 (4), 251-254.
    33. Wainright, J. S.; Wang, J. T.; Weng, D.; Savinell, R. F.; Litt, M., Acid-Doped Polybenzimidazoles: A New Polymer Electrolyte, Journal of the Electrochemical Society, 1995, 142 (7), L121-L123.
    34. Wang, J. T.; Wasmus, S.; Savinell, R. F., Real-Time Mass Spectrometric Study of the Methanol Crossover in a Direct Methanol Fuel Cell. Journal of the Electrochemical Society, 1996, 143 (4), 1233-1239.
    35. Wasmus, S.; Küver, A., Methanol oxidation and direct methanol fuel cells: a selective review, Journal of Electroanalytical Chemistry, 1999, 461 (1-2), 14-31.
    36. Heinzel, A.; Barragán, V. M., A review of the state-of-the-art of the methanol crossover in direct methanol fuel cells, Journal of Power Sources, 1999, 84 (1), 70-74.
    37. Kawahara, M.; Morita, J.; Rikukawa, M.; Sanui, K.; Ogata, N., Synthesis and proton conductivity of thermally stable polymer electrolyte: poly(benzimidazole) complexes with strong acid molecules, Electrochimica Acta, 2000, 45 (8-9), 1395-1398.
    38. Tsuruhara, K.; Rikukawa, M.; Sanui, K.; Ogata, N.; Nagasaki, Y.; Kato, M., Synthesis of proton conducting polymer based on poly(silamine), Electrochimica Acta, 2000, 45 (8-9), 1391-1394.
    39. Hogarth, M.; Glipa, X.; Centre, J. M. T., High temperature membranes for sold polymer fuel cells, 2001.
    40. Li, Q.; He, R.; Jensen, J. O.; Bjerrum, N. J., Approaches and Recent Development of Polymer Electrolyte Membranes for Fuel Cells Operating above 100 ℃, Chemistry of Materials, 2003, 15 (26), 4896-4915.
    41. Vogel, H.; Marvel, C. S., Polybenzimidazoles, new thermally stable polymers, Journal of Polymer Science, 1961, 50 (154), 511-539.
    42. Imai, Y.; Uno, K.; Iwakura, Y., Polybenzazoles, Makromol Chem, 1965, 83 (1), 179-187.
    43. Wolfe, J. F.; Sybert, P. D.; Sybert, J. R., Liquid crystalline polymer compositions, process, and products, 1985.
    44. Brinker, K. C.; Robinson, I. M., Polybenzimidazoles, 1959.
    45. Vogel, H.; Marvel, C. S., Polybenzimidazoles. II, Journal of Polymer Science Part A: General Papers, 1963, 1 (5), 1531-1541.
    46. Iwakura, Y.; Uno, K.; Imai, Y., Polyphenylenebenzimidazoles, Journal of Polymer Science Part A: General Papers, 1964, 2 (6), 2605-2615.
    47. Iwakura, Y., Uno, K.; Imai, Y., Polybenzimidazoles. II. Polyalkylenebenzimidazoles. Makromol Chem, 1964, 77 (1), 33-40.
    48. Hedberg, F. L.; Marvel, C. S., A new single-step process for polybenzimidazole synthesis, Journal of Polymer Science: Polymer Chemistry Edition, 1974, 12 (8), 1823-1828.
    49. Dudgeon, C. D.; Vogl, O., Bisorthoesters as polymer intermediates. II. A facile method for the preparation of polybenzimidazoles, Journal of Polymer Science: Polymer Chemistry Edition, 1978, 16 (8), 1831-1852.
    50. Ueda, M.; Sato, M.; Mochizuki, A., Poly(benzimidazole) synthesis by direct reaction of diacids and diamines, Macromolecules, 2002, 18 (12), 2723-2726.
    51. He, R.; Li, Q.; Xiao, G.; Bjerrum, N. J., Proton conductivity of phosphoric acid doped polybenzimidazole and its composites with inorganic proton conductors, Journal of Membrane Science, 2003, 226 (1-2), 169-184.
    52. Asensio, J. A.; Borrós, S.; Gómez-Romero, P., Enhanced conductivity in polyanion-containing polybenzimidazoles. Improved materials for proton-exchange membranes and PEM fuel cells, Electrochemistry Communications, 2003, 5 (11), 967-972.
    53. Xiao, L.; Zhang, H.; Scanlon, E.; Ramanathan, L. S.; Choe, E.-W.; Rogers, D.; Apple, T.; Benicewicz, B. C., High-Temperature Polybenzimidazole Fuel Cell Membranes via a Sol/Gel Process, Chemistry of Materials, 2005, 17 (21), 5328-5333.
    54. Krishnan, P.; Park, J.-S.; Kim, C.-S., Performance of a poly(2,5-benzimidazole) membrane based high temperature PEM fuel cell in the presence of carbon monoxide, Journal of Power Sources, 2006, 159 (2), 817-823.
    55. Wang, J. T.; Savinell, R. F.; Wainright, J.; Litt, M.; Yu, H., A H2/O2 fuel cell using acid doped polybenzimidazole as polymer electrolyte, Electrochimica Acta, 1996, 41 (2), 193-197.
    56. Xing, B.; Savadogo, O., Hydrogen/oxygen polymer electrolyte membrane fuel cells (PEMFCs) based on alkaline-doped polybenzimidazole (PBI) , Electrochemistry Communications, 2000, 2 (10), 697-702.
    57. Savadogo, O.; Xing, B., Hydrogen/Oxygen polymer electrolyte membrane fuel cells (PEMFCs) based on acid-doped polybenzimidazole (PBI), J. New Mater. Electrochem. Syst., 2000. 3, 345-349.
    58. Li, Q.; Hjuler, H. A.; Bjerrum, N. J., Phosphoric acid doped polybenzimidazole membranes: Physiochemical characterization and fuel cell applications, Journal of Applied Electrochemistry, 2001, 31 (7), 773-779.
    59. Hobson, L. J.; Nakano, Y.; Ozu, H.; Hayase, S., Targeting improved DMFC performance, Journal of Power Sources, 2002, 104 (1), 79-84.
    60. Li, Q.; He, R.; Berg, R. W.; Hjuler, H. A.; Bjerrum, N. J., Water uptake and acid doping of polybenzimidazoles as electrolyte membranes for fuel cells, Solid State Ionics, 2004, 168 (1-2), 177-185.
    61. Ammundsen, B.; Aitchison, P. B.; Burns, G. R.; Jones, D. J.; Rozière, J., Proton insertion and lithium-proton exchange in spinel lithium manganates, Solid State Ionics, 1997, 97 (1-4), 269-276.
    62. Staiti, P.; Lufrano, F.; Aric, A. S.; Passalacqua, E.; Antonucci, V., Sulfonated polybenzimidazole membranes -- preparation and physico-chemical characterization, Journal of Membrane Science, 2001, 188 (1), 71-78.
    63. Bae, J. M.; Honma, I.; Murata, M.; Yamamoto, T.; Rikukawa, M.; Ogata, N., Properties of selected sulfonated polymers as proton-conducting electrolytes for polymer electrolyte fuel cells, Solid State Ionics, 2002, 147 (1-2), 189-194.
    64. Asensio, J. A.; Borrós, S.; Gómez-Romero, P., Sulfonated poly(2,5-benzimidazole) (SABPBI) impregnated with phosphoric acid as proton conducting membranes for polymer electrolyte fuel cells, Electrochimica Acta, 2004, 49 (25), 4461-4466.
    65. Seland, F.; Berning, T.; Børresen, B.; Tunold, R., Improving the performance of high-temperature PEM fuel cells based on PBI electrolyte, Journal of Power Sources, 2006, 160 (1), 27-36.
    66. Ma, J., Review on Preparation Method of Membrane Electrode Assembly (MEA) for PEMFC, PROGRESS IN CHEMISTRY, 2004, 16 (5), 804.
    67. Srinivasan, S.; Ticianelli, E. A.; Derouin, C. R.; Redondo, A., Advances in solid polymer electrolyte fuel cell technology with low platinum loading electrodes, Journal of Power Sources, 1988, 22 (3-4), 359-375.
    68. E-tek Inc., Gas diffusion electrodes and catalyst materials, http://www.Etek-inc.com.
    69. Hirano, S.; Kim, J.; Srinivasan, S., High performance proton exchange membrane fuel cells with sputter-deposited Pt layer electrodes, Electrochimica Acta, 1997, 42 (10), 1587-1593.
    70. Taylor, E. J.; Anderson, E. B.; Vilambi, N. R. K., Preparation of High-Platinum-Utilization Gas Diffusion Electrodes for Proton-Exchange-Membrane Fuel Cells, Journal of the Electrochemical Society, 1992, 139 (5), L45-L46.
    71. Ticianelli, E. A.; Derouin, C. R.; Srinivasan, S., Localization of platinum in low catalyst loading electrodes to to attain high power densities in SPE fuel cells, Journal of Electroanalytical Chemistry, 1988, 251 (2), 275-295.
    72. Ticianelli, E. A.; Beery, J. G.; Srinivasan, S., Dependence of performance of solid polymer electrolyte fuel cells with low platinum loading on morphologic characteristics of the electrodes, Journal of Applied Electrochemistry, 1991, 21 (7), 597-605.
    73. Srinivasan, S.; Velev, O. A.; Parthasarathy, A.; Manko, D. J.; Appleby, A. J., High energy efficiency and high power density proton exchange membrane fuel cells - electrode kinetics and mass transport, Journal of Power Sources, 1991, 36 (3), 299-320.
    74. Srinivasan, S.; Manko, D. J.; Koch, H.; Enayetullah, M. A.; Appleby, A. J., Recent advances in solid polymer electrolyte fuel cell technology with low platinum loading electrodes, Journal of Power Sources, 1990, 29 (3-4), 367-387.
    75. Raistrick, I. D., 1989.
    76. Du, X.; Yu, J.; Yi, B.; Han, M.; Bi, K., Performances of proton exchange membrane fuel cells with alternate membranes, Physical Chemistry Chemical Physics, 2001, 3 (15), 3175-3179.
    77. 于景榮等,電源技術,Chinese J . Power Sources (2001)
    78. Hards, G. A.; Rulph, T. R., US Patent.
    79. Wakizoe, M.; Velev, O. A.; Srinivasan, S., Analysis of proton exchange membrane fuel cell performance with alternate membranes, Electrochimica Acta, 1995, 40 (3), 335-344.
    80. Hamaker, H. C., Physical, 1937.
    81. Van Tassel, J.; Randall, C. A., Electrophoretic deposition and sintering of thin/Thick PZT films, Journal of the European Ceramic Society, 1999, 19 (6-7), 955-958.
    82. Hamaker, H. C., Formation Of Deposition By Electrophoresis, Trans Farad. Soc., 1940.
    83. Sarkar, P.; De, D.; Rho, H., Synthesis and microstructural manipulation of ceramics by electrophoretic deposition, Journal of Materials Science, 2004, 39 (3), 819-823.
    84. Morikawa, H.; Tsuihiji, N.; Mitsui, T.; Kanamura, K., Preparation of Membrane Electrode Assembly for Fuel Cell by Using Electrophoretic Deposition Process, Journal of the Electrochemical Society, 2004, 151 (10), A1733-A1737.
    85. Kim, H.; Popov, B. N., Development of Novel Method for Preparation of PEMFC Electrodes, Electrochemical and Solid-State Letters, 2004, 7 (4), A71-A74.
    86. Kanamura, K.; Goto, A.; Rho, Y. H.; Umegaki, T., Electrophoretic fabrication of LiCoO2 positive electrodes for rechargeable lithium batteries, Journal of Power Sources, 2001, 97-98, 294-297.
    87. Negishi, H.; Yamaji, K.; Imura, T.; Kitamoto, D.; Ikegami, T.; Yanagishita, H., Electrophoretic Deposition Mechanism of YSZ/n-Propanol Suspension, Journal of the Electrochemical Society, 2005, 152 (2), J16-J22.
    88. Bai, H.; Ho, W. S. W., New sulfonated polybenzimidazole (SPBI) copolymer-based proton-exchange membranes for fuel cells, Journal of the Taiwan Institute of Chemical Engineers, 2009, 40 (3), 260-267.
    89. Zou, L.; Anthamatten, M., Synthesis and characterization of polyimide-polysiloxane segmented copolymers for fuel cell applications, Journal of Polymer Science Part A: Polymer Chemistry, 2007, 45 (16), 3747-3758.
    90. Gómez-Romero, P.; Asensio, J. A.; Borrós, S., Hybrid proton-conducting membranes for polymer electrolyte fuel cells: Phosphomolybdic acid doped poly(2,5-benzimidazole)-(ABPBI-H3PMo12O40), Electrochimica Acta, 2005, 50 (24), 4715-4720.
    91. Samms, S. R.; Wasmus, S.; Savinell, R. F., Thermal Stability of Nafion® in Simulated Fuel Cell Environments, Journal of the Electrochemical Society, 1996, 143 (5), 1498-1504.
    92. Qing, S.; Huang, W.; Yan, D., Synthesis and characterization of thermally stable sulfonated polybenzimidazoles, European Polymer Journal, 2005, 41 (7), 1589-1595.
    93. Bao, Y.; Nicholson, P. S., Constant Current Electrophoretic Infiltration Deposition of Fiber-Reinforced Ceramic Composites, Journal of the American Ceramic Society, 2007, 90 (4), 1063-1070.
    94. Moritz, K.; Müller, E., Investigation of the electrophoretic deposition behaviour of non-aqueous ceramic suspensions, Journal of Materials Science, 2006, 41 (24), 8047-8058.
    95. 簡偉翔,碩士學位論文,元智大學 (2005)
    96. Jalani, N. H.; Ramani, M.; Ohlsson, K.; Buelte, S.; Pacifico, G.; Pollard, R.; Staudt, R.; Datta, R., Performance analysis and impedance spectral signatures of high temperature PBI-phosphoric acid gel membrane fuel cells, Journal of Power Sources, 2006, 160 (2), 1096-1103.
    97. Zhang, J.; Tang, Y.; Song, C.; Zhang, J., Polybenzimidazole-membrane-based PEM fuel cell in the temperature range of 120-200 ℃, Journal of Power Sources, 2007, 172 (1), 163-171.

    QR CODE