簡易檢索 / 詳目顯示

研究生: 翁浚哲
Jun-Zhe Weng
論文名稱: 圓柱齒輪之線雷射輪廓感測器非接觸式掃描量測
NON-CONTACT SCANNING MEASUREMENT OF CYLINDRICAL GEARS USING THE LASER PROFILER
指導教授: 石伊蓓
Yi-Pei Shih
口試委員: 吳育仁
Yu-Ren Wu
陳羽薰
Yu-Hsun Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 123
中文關鍵詞: 圓柱齒輪線雷射掃描非接觸式量測五軸工具機B-Spline曲線擬合
外文關鍵詞: cylindrical gear, line laser scanning, non-contact measurement, five-axis machine tool, B-Spline curve fitting
相關次數: 點閱:502下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

現代齒輪專用量測機為四軸結構,配備接觸式掃描探頭系統,有很高的量測精度。然而接觸式量測面臨幾個問題,主要有(1)量測需要比較長的時間,很難縮短工作時程,以及(2)直徑過小的探頭(小於1mm)容易斷裂,故量測小模數齒輪有所限制,因此非接觸式掃描量測成為近年研究的主要課題。
本論文主要致力於建立圓柱齒輪的線雷射輪廓感測器非接觸式掃描量測系統,利用五軸工具機上的西門子840Dsl控制器和線雷射感測器的組合規劃量測路徑,並藉由以Visual C#開發的程式計算量測路徑和圓柱齒輪精度評估。
本論文在五軸機上發展四軸量測機之線雷射掃描量測系統,建立圓柱齒輪的量測數學模式及其精度評估。根據圓柱齒輪的理論齒形可計算出線雷射感測器的量測位置,輪廓資料點(每條線有3200點)將從線雷射控制器透過乙太網路傳輸至個人電腦並建構量測齒面,而B-Spline曲線適合對量測資料點進行擬合,以建立評估齒輪精度的數學模式。實驗結果將與Klingelnberg P40齒輪量測專用機檢測報告比對,以驗證數學模式的正確性。


The modern four-axis gear measuring machine has a contact scanning probe system with high measurement accuracy. However, the contact measurement has several problems. The main ones are (1) the measurement takes a long time, it is difficult to shorten the processing time, and (2) if the diameter of the probe is too small (diameter less than 1mm) is easy to damage, so the measurement of small-sized gears is limited. Therefore, the non-contact scanning measurement gets more attention in recent years.
This research mainly focuses on establishing the line non-contact scanning measurement system of cylindrical gears using the line laser profiler. The measurement path is planned using the combination of the Siemens 840Dsl controller and the line laser sensor on a five-axis machine tool. The program developed by the Visual C# calculates the measurement positions and evaluates the cylindrical gears' accuracy.
This research develops the four-axis line laser scanning measurement system on the five-axis machine tool. The mathematical model of the cylindrical gear measurement and its accuracy evaluation is established. The measurement positions of the line laser profiler are calculated depended on the theoretical tooth profile of the cylindrical gear. The profile data points (each line has 3200 points) will be transmitted to the personal computer through an Ethernet network from the line laser sensor controller and construct the measured tooth surface. Here, the B-Spline curve is adapted to fit the measured data points to establish the mathematical model for evaluating the gear accuracy. The experimental results will be compared with the Klingelnberg P40 gear measuring machine inspection report to verify the mathematical model's correctness.

指導教授推薦書 I 學位考試委員會審定書 II 中文摘要 III Abstract IV 謝誌 V 目錄 VI 符號定義 IX 圖索引 XIII 表索引 XVI 第1章 緒論 1 1.1 前言 1 1.2 研究動機 2 1.3 研究目的 2 1.4 文獻回顧 3 1.5 論文架構 4 第2章 線雷射量測系統架構 6 2.1 前言 6 2.2 架設五軸工具機掃描量測系統 6 2.3 西門子SINUMERIK 840D sl控制器 7 2.4 線雷射掃描感測器 8 2.4.1 雷射量測系統硬體架構 10 2.4.2 線雷射感測器之環境設定 10 2.5 PC端與西門子NCU控制器資料傳遞 12 2.6 PC端與線雷射控制器資料傳遞 12 2.7 線雷射齒輪量測人機介面規劃 14 2.8 小結 16 第3章 圓柱齒輪之齒面數學模式與精度評估 17 3.1 前言 17 3.2 圓柱齒輪齒面數學模式 17 3.3 圓柱齒輪檢測項目與精度評估 22 3.3.1 節距誤差評估 23 3.3.2 齒形誤差評估 25 3.3.3 導程誤差評估 27 3.3.4 徑向跳動評估 28 3.4 精度等級評估 29 3.5 小結 30 第4章 線雷射量測齒輪齒面數學模式及誤差 31 4.1 前言 31 4.2 線雷射齒面量測點資料 31 4.3 量測齒面擬合數學模式 33 4.3.1 曲線擬合量測點 33 4.3.2 擬合曲線誤差分析 34 4.4 齒輪誤差評估 35 4.5 線雷射量測雜訊處理 37 4.6 基準面校正 40 4.7 中心軸偏心校正 41 4.8 數值範例 41 4.9 小結 47 第5章 五軸工具機量測路徑規劃式 48 5.1 前言 48 5.2 五軸工具機 48 5.3 機械誤差校正 49 5.4 圓柱齒輪齒形量測路徑 50 5.4.1 正齒輪量測方式 51 5.4.2 螺旋齒輪量測方式 59 5.5 數值範例 64 5.6 小結 68 第6章 線雷射掃描圓柱齒輪量測實驗結果 69 6.1 前言 69 6.2 線雷射掃描量測重複精度校驗 69 6.3 線雷射掃描量測正齒輪結果 73 6.3.1 節距誤差量測結果 74 6.3.2 齒形誤差量測結果 76 6.3.3 導程誤差量測結果 77 6.4 線雷射掃描量測螺旋齒輪結果 78 6.4.1 節距誤差量測結果 79 6.4.2 齒形誤差量測結果 81 6.4.3 導程誤差量測結果 82 6.5 與克林根貝格P40齒輪量測中心之齒輪量測結果之比較 83 6.5.1 正齒輪結果比較 83 6.5.2 螺旋齒輪結果比較 88 6.6 小結 92 第7章 結論與建議 93 7.1 結果與討論 93 7.2 建議與未來展望 94 參考文獻 96 附錄A. P40圓柱齒輪量測資料 99 附錄B. NC量測路徑 103

[1]Litvin, F. L., and Gutman, Y., 1981, "Methods of synthesis and analysis for hypoid gear-drives of "formate" and "helixform"—Part 1. Calculations for machine settings for member gear manufacture of the formate and helixform hypoid gears," ASME J. Mech. Des., 103(1), pp. 83-88.
[2]Litvin, F. L., and Gutman, Y., 1981, "Methods of synthesis and analysis for hypoid gear-drives of "formate" and "helixform"—Part 2. Machine setting calculations for the pinions of formate and helixform gears," ASME J. Mech. Des., 103(1), pp. 89-101.
[3]Litvin, F. L., and Gutman, Y., 1981, "Methods of synthesis and analysis for hypoid gear-drives of "formate" and "helixform"—Part 3. Analysis and optimal synthesis methods for mismatch gearing and its application for hypoid gears of "formate" and "helixform"," ASME J. Mech. Des., 103(1), pp. 102-110.
[4]Litvin, F. L., and Fuentes, A., 2004, "Gear geometry and applied theory," Cambridge University Press.
[5]DIN 3961, 1980, "Tolerances for Cylindrical Gear Teeth-Bases," Germany.
[6]DIN 3962, 1978, "Tolerances for Cylindrical Gear Teeth-Tolerances for Deviations of Individual Parameters," Germany.
[7]Klingelnberg, 2006, "P40 Operating Instructions, Bevel Gear Software, Version 03-000en."
[8]Piegl, L., and Tiller, W., 1997, "The NURBS Book, 2nd Edition," Springer, Berlin, Germany.
[9]林彥宏,2004,五軸虛擬工具機模擬系統一般化建構之研究,碩士,國立成功大學,台南市。
[10]蔡佳宏,2011,五軸CNC成形砂輪磨齒機線上掃描式量測NC路徑規劃與齒輪精度評估之研究,碩士,國立臺灣科技大學,台北市。
[11]Shih, Y. P., and Lin, S. H., 2016, "Topographic Measurement for Bevel Gears Using a One-Dimensional Scanning Probe Based on a Five-Axis CNC Machine," Journal of the Chinese Society of Mechanical Engineers, Transactions of the Chinese Institute of Engineers, 37(5), pp. 471-478.
[12]Shih, Y. P., and You, C. H., 2017, "On-machine quasi-3D scanning measurement of bevel gears on a five-axis CNC machine," Journal of the Chinese Institute of Engineers, Transactions of the Chinese Institute of Engineers, 40(3), pp. 207-218.
[13]Ibaraki, S., Kimura, Y., Nagai, Y., and Nishikawa, S., 2015, "Formulation of influence of machine geometric errors on five-axis on-machine scanning measurement by using a laser displacement sensor," Journal of Manufacturing Science and Engineering, Transactions of the ASME, 137(2), p. 021013.
[14]Abe, G., Aritoshi, M., Tomita, T., and Shirase, K., 2011, "Development of on-machine measurement system utilizing line laser displacement sensor," International Journal of Automation Technology, 5(5), pp. 708-714.
[15]Liu, R., Zhong, D., Lyu, H., and Han, J., 2016, "A bevel gear quality inspection system based on multi-camera vision technology," Sensors (Switzerland), 16(9), p. 1364.
[16]Luo, M., and Zhong, S., 2018, "Non-contact measurement of small-module gears using optical coherence tomography," Applied Sciences (Switzerland), 8(12), p. 2490.
[17]Chen, Y. C., and Chen, J. Y., 2019, "Optical inspection system for gear tooth surfaces using a projection moiré method," Sensors (Switzerland), 19(6), p. 1450.
[18]Okuyama, E., Kiyono, S., and Moritoki, H., 1994, "Investigation of an optical noncontact gear geometry measurement system: measurement of pitch errors and tooth profiles," Precision Engineering, 16(2), pp. 117-123.
[19]Smith, K. B., and Zheng, Y. F., 2001, "Optimal path planning for helical gear profile inspection with point laser triangulation probes," Journal of Manufacturing Science and Engineering, Transactions of the ASME, 123(1), pp. 90-98.
[20]Younes, M. A., Khalil, A. M., and Damir, M. N., 2005, "Automatic measurement of spur-gear dimensions using laser light. Part 1: Measurement of tooth thickness and pitch," Optical Engineering, 44(8), p. 087201.
[21]Younes, M. A., Khalil, A. M., and Damir, M. N., 2005, "Automatic measurement of spur gear dimensions using laser light, part 2: Measurement of flank profile," Optical Engineering, 44(10), p. 103603.
[22]Fang, S. P., Wang, L. J., Komori, M., and Kubo, A., 2011, "Design of laser interferometric system for measurement of gear tooth flank," Optik, 122(14), pp. 1301-1304.
[23]Li, H. W., Liang, Z. Q., Pei, J. J., Jiao, L., Xie, L. J., and Wang, X. B., 2018, "New measurement method for spline shaft rolling performance evaluation using laser displacement sensor," Chinese Journal of Mechanical Engineering (English Edition), 31(4), p. 100072.
[24]Raghuwanshi, N. K., and Parey, A., 2018, "Experimental measurement of mesh stiffness by laser displacement sensor technique," Measurement: Journal of the International Measurement Confederation, 128, pp. 63-70.
[25]Jiang, H., Sun, X., and Liu, F., 2020, "Measurement method of tooth friction force for helical gears by laser displacement sensor," Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42(6), p. 338.
[26]Auerswald, M. M., von Freyberg, A., and Fischer, A., 2019, "Laser line triangulation for fast 3D measurements on large gears," International Journal of Advanced Manufacturing Technology, 100(9-12), pp. 2423-2433.
[27]Guo, X., Shi, Z., Yu, B., Zhao, B., Li, K., and Sun, Y., 2020, "3D measurement of gears based on a line structured light sensor," Precision Engineering, 61, pp. 160-169.
[28]Pei, Y. C., Xie, H. L., and Tan, Q. C., 2020, "A non-contact high precision measuring method for the radial runout of cylindrical gear tooth profile," Mechanical Systems and Signal Processing, 138, p. 106543.
[29]Chai, Z., Lu, Y., Li, X., Cai, G., Tan, J., and Ye, Z., 2021, "Non-contact measurement method of coaxiality for the compound gear shaft composed of bevel gear and spline," Measurement: Journal of the International Measurement Confederation, 168, p. 108453.
[30]Urbas, U., Zorko, D., Černe, B., Tavčar, J., and Vukašinović, N., 2020, "A method for enhanced polymer spur gear inspection based on 3D optical metrology," Measurement: Journal of the International Measurement Confederation, 169, p. 108584.

無法下載圖示 全文公開日期 2026/09/04 (校內網路)
全文公開日期 2026/09/04 (校外網路)
全文公開日期 2026/09/04 (國家圖書館:臺灣博碩士論文系統)
QR CODE