簡易檢索 / 詳目顯示

研究生: 陳世軒
Shih-Hsuan Chen
論文名稱: 以室溫法合成全無機含鉛鹵素鈣鈦礦量子點
Synthesis of All Inorganic Lead Halide Perovskit Quantum Dots
指導教授: 陳良益
Liang-Yih Chen
口試委員: 江志強
Jyh-Chiang Jiang
陳景翔
Ching-Hsiang Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 146
中文關鍵詞: 量子點鈣鈦礦
外文關鍵詞: quantum dots, perovskit
相關次數: 點閱:226下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究以室溫合成法進行全無機銫鉛溴鈣鈦礦量子點製備,並藉由結構分析與光學性質量測進行材料特性研究。由分析結果可知:以室溫合成法所製備的銫鉛溴鈣鈦礦量子點,其尺寸分佈均勻且螢光量子效率可達91.8 %。此外,藉由不同的鹵素前驅物與銫鉛溴鈣鈦礦量子點進行陰離子交換,可改變組成與激發光波長進而達到涵蓋整個可見光波段。而藉由陰離子交換所得的紅光量子點穩定性,根據研究結果顯示:以丙酮做為沉澱劑可有效提升紅光量子點的穩定性;此外,當紅光量子點放射光譜波長位於650 nm時,其穩定性優於放射光譜波長位於670 nm的紅光量子點,且保存於辛烷中比保存於甲苯中優異。而在表面配體的研究方面,減少紅光量子點表面的油胺,可減緩紅光量子點的衰退週期,在經過50天後紅光量子點仍可維持60 %以上的量子效率。在製程放大的研究方面,以批式放大製程進行銫鉛溴鈣鈦礦量子點的合成,會因為攪拌不易均勻而導致粒徑分布不佳,且量子效率會大幅度下降至66.9 %;而藉由連續式進料製程可得到粒徑分布均勻的銫鉛溴鈣鈦礦量子點,其中又以1.6 mL/min的流速最佳,所合成的銫鉛溴鈣鈦礦量子點量子效率具有83.9%。在本研究中,為了進一步提升銫鉛溴鈣鈦礦量子點的穩定性以應用於白光二極體轉換層,使用矽酸四甲酯在相對溼度65%的室溫環境下進行水解反應,完成以二氧化矽包覆銫鉛溴鈣鈦礦量子點。將二氧化矽包覆銫鉛溴鈣鈦礦量子點分散於水中可防止劣化機制進行並維持其發光性質。


In this study, all inorganic cesium lead bromide (CsPbBr3) perovskite quantum dots (QDs) were synthesized via room temperature process. The properties of CsPbBr3 QDs were analyzed by structural and optical measurement. From analysis results, we can know that the size distribution of room temperature prepared CsPbBr3 QDs is very uniform and the quantum yield (QY) can achieve 91.8 %. In addition, the composition emission wavelengths of perovskite QDs can adjust by anion exchange process. The emission wavelengths can cover the whole visible region. The stability of red emission QDs made by anion exchange process can be effectively improved by using acetone as precipitant. Besides, the stability of red emission QDs with 650 nm is superior to the red emission QDs with 670 nm. For storage issue, the stability of red emission QDs suspended in octane is better than that in toluene. We also studied the influence of ligand on the surfaces of QDs and observed that the emission quenching of red emission QDs can effectively reduce with low residual oleylamine on the surfaces of QDs. After 50 days, the QY can maintain 60% of the original value. For the massive production, we tried two kinds of methods, batch process and continuous flow process, to synthesize CsPbBr3 QDs. The QY of CsPbBr3 QDs synthesize by batch process would reduce to 66.9% due to non-uniformly stirring. However, the size distribution of CsPbBr3 QDs was uniform when continuous flow process was employed and the QY of CsPbBr3 QDs could achieve 83.9% when the flow rate was set as 1.6 mL/min. To improve the stability of CsPbBr3 QDs furthermore for using in white light converter layer, silicon oxide (SiOx) layer was formed as matrix to cover CsPbBr3 QDs by using tetramethyl orthosilicate (TMOS) under relative humidity of 65% and room temperature. SiOx covered CsPbBr3 QDs could be suspended in water to emission light without serious degradation.

中文摘要 Abstract 致謝 目錄 圖目錄 表目錄 第一章、 緒論 1-1量子點簡介 1-2研究動機與目的 第二章、 理論基礎與文獻回顧 2-1半導體與奈米材料 2-1-1半導體材料 2-1-2奈米材料 2-2鈣鈦礦量子點 2-2-1鈣鈦礦結構分析 2-2-2 CsPbX3量子點合成 2-2-3 CsPbX3量子點材料特性 2-3 CsPbX3量子點穩定性探討 2-3-1 CsPbX3量子點不穩定因素 2-3-2增加紅光CsPbI3穩定性 2-3-2 抑制CsPbX3量子點固態擴散探討 2-4鈣鈦礦量子點應用 2-4-1白光二極體光轉換材料 2-4-2太陽能電池 2-4-3發光二極體 第三章、 實驗設計 3-1實驗流程圖 3-2實驗藥品 3-3實驗分析儀器與原理 3-4實驗步驟 3-4-1室溫法合成CsPbBr3量子點 3-4-2陰離子置換 3-4-3 CsPbX3量子點螢光量子效率測量 3-4-4 以TMOS包覆CsPbBr3量子點材料 第四章、結果與討論 4-1 CsPbX3量子點製程參數探討與材料性質分析 4-1-1以室溫合成進行CsPbBr3量子點製備與材料性質分析 4-1-2以陰離子置換法進行CsPbX3 (X=Cl,I)量子點製備與材料性質分析 4-2 CsPb(Br/I)3紅光量子點穩定性製程參數探討 4-2-1丙酮對CsPb(Br/I)3量子點之穩定性影響 4-2-2分散溶液及波長位置對CsPb(Br/I)3量子點之穩定性影響 4-2-3 油胺量對CsPb(Br/I)3量子點穩定性影響 4-3 製程放大技術之製成參數探討 4-3-1批式製程 4-3-2連續式進料製程 4-4 利用TMOS包覆CsPbBr3量子點 第五章、結論 第六章、參考文獻

1. G. Nedelcu, L. Protesescu, S. Yakunin, M. I. Bodnarchuk, M. J. Grotevent and M. V. Kovalenko. Fast anion-exchange in highly luminescent nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I). Nano Letters 15 (8), 5635-5640 (2015).
2. C.-J. Yu, U.-G. Jong, M.-H. Ri, G.-C. Ri and Y.-H. Pae. Electronic structure and photoabsorption property of pseudocubic perovskites CH3NH3PbX3 (X = I, Br) including van der waals interaction. Journal of Materials Science 51 (21), 9849-9854 (2016).
3. S. Sun, Y. Fang, G. Kieslich, T. J. White and A. K. Cheetham. Mechanical properties of organic–inorganic halide perovskites, CH3NH3PbX3 (X = I, Br and Cl), by nanoindentation. Journal of Materials Chemistry A 3 (36), 18450-18455 (2015).
4. M. Kulbak, S. Gupta, N. Kedem, I. Levine, T. Bendikov, G. Hodes and D. Cahen. Cesium enhances long-term stability of lead bromide perovskite-based solar cells. Journal of Physical Chemistry Letters 7 (1), 167-172 (2016).
5. M. Kulbak, D. Cahen and G. Hodes. How important is the organic part of lead halide perovskite photovoltaic cells? efficient CsPbBr3 cells. The Journal of Physical Chemistry Letters 6 (13), 2452-2456 (2015).
6. X. Li, F. Cao, D. Yu, J. Chen, Z. Sun, Y. Shen, Y. Zhu, L. Wang, Y. Wei, Y. Wu and H. Zeng. All inorganic halide perovskites nanosystem: synthesis, structural features, optical properties and optoelectronic applications. Small 13 (9) (2017).
7. D. M. Trots and S. V. Myagkota. High-temperature structural evolution of caesium and rubidium triiodoplumbates. Journal of Physics and Chemistry of Solids 69 (10), 2520-2526 (2008).
8. 施敏, 半導體元件物理學. (交大出版社, 2009).
9. A. P. Alivisatos. Semiconductor clusters, nanocrystals, and quantum dots. Science 271 (5251), 933-937 (1996).
10. A. I. Ekimov, A. L. Efros and A. A. Onushchenko. Quantum size effect in semiconductor microcrystals. Solid State Communications 56 (11), 921-924 (1985).
11. B. Zorman, M. V. Ramakrishna and R. Friesner. Quantum confinement effects in CdSe quantum dots. The Journal of Physical Chemistry 99 (19), 7649-7653 (1995).
12. M. Fox, Optical properties of solids. (Oxford university press, 2010).
13. S. Shi, Y. Li, X. Li and H. Wang. Advancements in all-solid-state hybrid solar cells based on organometal halide perovskites. Materials Horizons 2 (4), 378-405 (2015).
14. A. Bhalla, R. Guo and R. Roy. The perovskite structure–a review of its role in ceramic science and technology. Material Research Innovations 4 (1), 3-26 (2000).
15. G. E. Eperon, S. D. Stranks, C. Menelaou, M. B. Johnston, L. M. Herz and H. J. Snaith. Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy & Environmental Science 7 (3), 982 (2014).
16. H. L. Wells. Uber die Casium‐und Kalium‐Bleihalogenide. Zeitschrift für anorganische und allgemeine Chemie 3 (1), 195-210 (1893).
17. C. K. MØLLER. Crystal structure and photoconductivity of caesium plumbohalides. Nature 182 (4647), 1436 (1958).
18. S. Hirotsu. Experimental studies of structural phase transitions in CsPbCl3. Journal of the Physical Society of Japan 31 (2), 552-560 (1971).
19. H. Huang, M. I. Bodnarchuk, S. V. Kershaw, M. V. Kovalenko and A. L. Rogach. Lead halide perovskite nanocrystals in the research spotlight: stability and defect tolerance. ACS Energy Letters 2 (9), 2071-2083 (2017).
20. D. Weber. CH3NH3PbX3, ein Pb (II)-System mit kubischer Perowskitstruktur/CH3NH3PbX3, a Pb (II)-system with cubic perovskite structure. Zeitschrift für Naturforschung B 33 (12), 1443-1445 (1978).
21. S. J. Clark, C. D. Flint and J. D. Donaldson. Luminescence and electrical conductivity of CsSnBr3, and related phases. Journal of Physics and Chemistry of Solids 42 (3), 133-135 (1981).
22. A. N. Christensen and S. Rasmussen. A ferroelectric chloride of perovskite type. Acta Chem. Scand 19, 421-428 (1965).

23. M. Nikl, K. Nitsch, K. Polak, E. Mihokova, S. Zazubovich, G. Pazzi, P. Fabeni, L. Salvini, R. Aceves and M. Barbosa-Flores. Quantum size effect in the excitonic luminescence of CsPbX3-like quantum dots in CsX (X= Cl, Br) single crystal host. Journal of Luminescence 72, 377-379 (1997).
24. A. Kojima, K. Teshima, Y. Shirai and T. Miyasaka. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society 131 (17), 6050-6051 (2009).
25. N. J. Jeon, J. H. Noh, W. S. Yang, Y. C. Kim, S. Ryu, J. Seo and S. I. Seok. Compositional engineering of perovskite materials for high-performance solar cells. Nature 517 (7535), 476-480 (2015).
26. H. Kim, K.-G. Lim and T.-W. Lee. Planar heterojunction organometal halide perovskite solar cells: roles of interfacial layers. Energy & Environmental Science 9 (1), 12-30 (2016).
27. W. S. Yang, B.-W. Park, E. H. Jung, N. J. Jeon, Y. C. Kim, D. U. Lee, S. S. Shin, J. Seo, E. K. Kim and J. H. Noh. Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells. Science 356 (6345), 1376-1379 (2017).
28. L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh and M. V. Kovalenko. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Letters 15 (6), 3692-3696 (2015).
29. L. C. Schmidt, A. Pertegás, S. González-Carrero, O. Malinkiewicz, S. Agouram, G. Mínguez Espallargas, H. J. Bolink, R. E. Galian and J. Pérez-Prieto. Nontemplate synthesis of CH3NH3PbBr3 perovskite nanoparticles. Journal of the American Chemical Society 136 (3), 850-853 (2014).
30. F. Zhang, H. Zhong, C. Chen, X.-g. Wu, X. Hu, H. Huang, J. Han, B. Zou and Y. Dong. Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X= Br, I, Cl) quantum dots: potential alternatives for display technology. ACS Nano 9 (4), 4533-4542 (2015).
31. I. Levchuk, A. Osvet, X. Tang, M. Brandl, J. D. Perea, F. Hoegl, G. J. Matt, R. Hock, M. Batentschuk and C. J. Brabec. Brightly luminescent and color-tunable formamidinium lead halide perovskite FAPbX3 (X= Cl, Br, I) colloidal nanocrystals. Nano Letters 17 (5), 2765-2770 (2017).
32. S. Wei, Y. Yang, X. Kang, L. Wang, L. Huang and D. Pan. Room-temperature and gram-scale synthesis of CsPbX3 (X = Cl, Br, I) perovskite nanocrystals with 50–85% photoluminescence quantum yields. Chemical Communications 52 (45), 7265-7268 (2016).
33. X. Li, Y. Wu, S. Zhang, B. Cai, Y. Gu, J. Song and H. Zeng. CsPbX3 quantum dots for lighting and displays: room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes. Advanced Functional Materials 26 (15), 2435-2445 (2016).
34. M. Grabolle, M. Spieles, V. Lesnyak, N. Gaponik, A. Eychmüller and U. Resch-Genger. Determination of the fluorescence quantum yield of quantum dots: suitable procedures and achievable uncertainties. Analytical Chemistry 81 (15), 6285-6294 (2009).
35. A. M. Brouwer. Standards for photoluminescence quantum yield measurements in solution (IUPAC Technical Report). Pure and Applied Chemistry 83 (12), 2213-2228 (2011).
36. G. Reynolds and K. Drexhage. New coumarin dyes with rigidized structure for flashlamp-pumped dye lasers. Optics Communications 13 (3), 222-225 (1975).
37. M. Galanin, A. Kutyonkov, V. Smorchkov, Y. P. Timofeev and Z. Chizhikova. Measurement of photoluminescence quantum yield of dye solutions by the Vavilov and integrating-sphere methods. Optics and Spectroscopy 53, 405-409 (1982).
38. K. H. Drexhage. Fluorescence efficiency of laser dyes. J Res Natl Bur Stand Sect A Phys Chem 80 A (3), 421-428 (1976).
39. A. Swarnkar, R. Chulliyil, V. K. Ravi, M. Irfanullah, A. Chowdhury and A. Nag. Colloidal CsPbBr3 perovskite nanocrystals: luminescence beyond traditional quantum dots. Angewandte Chemie International Edition 54 (51), 15424-15428 (2015).
40. R. A. Jishi, O. B. Ta and A. A. Sharif. Modeling of lead halide perovskites for photovoltaic applications. The Journal of Physical Chemistry C 118 (49), 28344-28349 (2014).
41. A. Buin, P. Pietsch, J. Xu, O. Voznyy, A. H. Ip, R. Comin and E. H. Sargent. Materials processing routes to trap-free halide perovskites. Nano Letters 14 (11), 6281-6286 (2014).

42. D. N. Dirin, L. Protesescu, D. Trummer, I. V. Kochetygov, S. Yakunin, F. Krumeich, N. P. Stadie and M. V. Kovalenko. Harnessing defect-tolerance at the nanoscale: highly luminescent lead halide perovskite nanocrystals in mesoporous silica matrixes. Nano Letters 16 (9), 5866-5874 (2016).
43. B. A. Koscher, N. D. Bronstein, J. H. Olshansky, Y. Bekenstein and A. P. Alivisatos. Surface- vs diffusion-limited mechanisms of anion exchange in CsPbBr3 nanocrystal cubes revealed through kinetic studies. Journal of the American Chemical Society 138 (37), 12065-12068 (2016).
44. Q. A. Akkerman, V. D’Innocenzo, S. Accornero, A. Scarpellini, A. Petrozza, M. Prato and L. Manna. Tuning the optical properties of cesium lead halide perovskite nanocrystals by anion exchange reactions. Journal of the American Chemical Society 137 (32), 10276-10281 (2015).
45. L. Protesescu, S. Yakunin, S. Kumar, J. Bär, F. Bertolotti, N. Masciocchi, A. Guagliardi, M. Grotevent, I. Shorubalko, M. I. Bodnarchuk, C.-J. Shih and M. V. Kovalenko. Dismantling the “red wall” of colloidal perovskites: highly luminescent frmamidinium and formamidinium–cesium lead Iodide nanocrystals. ACS Nano 11 (3), 3119-3134 (2017).
46. W. van der Stam, J. J. Geuchies, T. Altantzis, K. H. W. van den Bos, J. D. Meeldijk, S. Van Aert, S. Bals, D. Vanmaekelbergh and C. de Mello Donega. Highly emissive divalent-Ion-doped colloidal CsPb1–xMxBr3 perovskite nanocrystals through cation exchange. Journal of the American Chemical Society 139 (11), 4087-4097 (2017).
47. G. E. Eperon, G. M. Paterno, R. J. Sutton, A. Zampetti, A. A. Haghighirad, F. Cacialli and H. J. Snaith. Inorganic caesium lead iodide perovskite solar cells. Journal of Materials Chemistry A 3 (39), 19688-19695 (2015).
48. C. Yi, J. Luo, S. Meloni, A. Boziki, N. Ashari-Astani, C. Grätzel, S. M. Zakeeruddin, U. Röthlisberger and M. Grätzel. Entropic stabilization of mixed A-cation ABX 3 metal halide perovskites for high performance perovskite solar cells. Energy & Environmental Science 9 (2), 656-662 (2016).

49. R. E. Beal, D. J. Slotcavage, T. Leijtens, A. R. Bowring, R. A. Belisle, W. H. Nguyen, G. F. Burkhard, E. T. Hoke and M. D. McGehee. Cesium lead halide perovskites with improved stability for tandem solar cells. The Journal of Physical Chemistry Letters 7 (5), 746-751 (2016).
50. C. C. Stoumpos, C. D. Malliakas, J. A. Peters, Z. Liu, M. Sebastian, J. Im, T. C. Chasapis, A. C. Wibowo, D. Y. Chung and A. J. Freeman. Crystal growth of the perovskite semiconductor CsPbBr3: a new material for high-energy radiation detection. Crystal Growth & Design 13 (7), 2722-2727 (2013).
51. S. Hirotsu, J. Harada, M. Iizumi and K. Gesi. Structural phase transitions in CsPbBr3. Journal of the Physical Society of Japan 37 (5), 1393-1398 (1974).
52. Y. Fujii, S. Hoshino, Y. Yamada and G. Shirane. Neutron-scattering study on phase transitions of CsPbCl3. Physical Review B 9 (10), 4549 (1974).
53. J. Cape, R. White and R. Feigelson. EPR Study of the Structure of CsPbCl3. Journal of Applied Physics 40 (13), 5001-5005 (1969).
54. S. Sun, D. Yuan, Y. Xu, A. Wang and Z. Deng. Ligand-mediated synthesis of shape-controlled cesium lead halide perovskite nanocrystals via reprecipitation process at room temperature. ACS Nano 10 (3), 3648-3657 (2016).
55. J. Shamsi, Z. Dang, P. Bianchini, C. Canale, F. Di Stasio, R. Brescia, M. Prato and L. Manna. Colloidal synthesis of quantum confined single crystal CsPbBr3 nanosheets with lateral size control up to the micrometer range. Journal of the American Chemical Society 138 (23), 7240-7243 (2016).
56. G. Li, H. Wang, T. Zhang, L. Mi, Y. Zhang, Z. Zhang, W. Zhang and Y. Jiang. Solvent‐polarity‐engineered controllable synthesis of highly fluorescent cesium lead halide perovskite quantum dots and their use in white light‐emitting diodes. Advanced Functional Materials 26 (46), 8478-8486 (2016).
57. Y. Yin and A. P. Alivisatos. Colloidal nanocrystal synthesis and the organic–inorganic interface. Nature 437 (7059), 664 (2004).
58. C. R. Bealing, W. J. Baumgardner, J. J. Choi, T. Hanrath and R. G. Hennig. Predicting nanocrystal shape through consideration of surface-ligand interactions. ACS Nano 6 (3), 2118-2127 (2012).
59. N. Pradhan, D. Reifsnyder, R. Xie, J. Aldana and X. Peng. Surface ligand dynamics in growth of nanocrystals. Journal of the American Chemical Society 129 (30), 9500-9509 (2007).
60. S. Sourisseau, N. Louvain, W. Bi, N. Mercier, D. Rondeau, F. Boucher, J.-Y. Buzaré and C. Legein. Reduced band gap hybrid perovskites resulting from combined hydrogen and halogen bonding at the organic− inorganic interface. Chemistry of Materials 19 (3), 600-607 (2007).
61. D. Zherebetskyy, M. Scheele, Y. Zhang, N. Bronstein, C. Thompson, D. Britt, M. Salmeron, P. Alivisatos and L.-W. Wang. Hydroxylation of the surface of PbS nanocrystals passivated with oleic acid. Science 344 (6190), 1380-1384 (2014).
62. A. Pan, B. He, X. Fan, Z. Liu, J. J. Urban, A. P. Alivisatos, L. He and Y. Liu. Insight into the ligand-mediated synthesis of colloidal CsPbBr3 perovskite nanocrystals: The role of organic acid, base, and cesium precursors. ACS Nano 10 (8), 7943-7954 (2016).
63. J. M. Frost, K. T. Butler, F. Brivio, C. H. Hendon, M. Van Schilfgaarde and A. Walsh. Atomistic origins of high-performance in hybrid halide perovskite solar cells. Nano Letters 14 (5), 2584-2590 (2014).
64. Q. Wang, B. Chen, Y. Liu, Y. Deng, Y. Bai, Q. Dong and J. Huang. Scaling behavior of moisture-induced grain degradation in polycrystalline hybrid perovskite thin films. Energy & Environmental Science 10 (2), 516-522 (2017).
65. Y. Kim, E. Yassitepe, O. Voznyy, R. Comin, G. Walters, X. Gong, P. Kanjanaboos, A. F. Nogueira and E. H. Sargent. Efficient luminescence from perovskite quantum dot solids. ACS Applied Materials & Interfaces 7 (45), 25007-25013 (2015).
66. J. Chen, D. Liu, M. J. Al-Marri, L. Nuuttila, H. Lehtivuori and K. Zheng. Photo-stability of CsPbBr3 perovskite quantum dots for optoelectronic application. Science China Materials 59 (9), 719-727 (2016).
67. J. De Roo, M. Ibáñez, P. Geiregat, G. Nedelcu, W. Walravens, J. Maes, J. C. Martins, I. Van Driessche, M. V. Kovalenko and Z. Hens. Highly dynamic ligand binding and light absorption coefficient of cesium lead bromide perovskite nanocrystals. ACS Nano 10 (2), 2071-2081 (2016).
68. E. Yassitepe, Z. Yang, O. Voznyy, Y. Kim, G. Walters, J. A. Castañeda, P. Kanjanaboos, M. Yuan, X. Gong, F. Fan, J. Pan, S. Hoogland, R. Comin, O. M. Bakr, L. A. Padilha, A. F. Nogueira and E. H. Sargent. Amine-free synthesis of cesium lead halide perovskite puantum dots for efficient light-emitting diodes. Advanced Functional Materials 26 (47), 8757-8763 (2016).
69. N. C. Anderson, M. P. Hendricks, J. J. Choi and J. S. Owen. Ligand exchange and the stoichiometry of metal chalcogenide nanocrystals: spectroscopic observation of facile metal-carboxylate displacement and binding. Journal of the American Chemical Society 135 (49), 18536-18548 (2013).
70. A. Hassinen, I. Moreels, K. De Nolf, P. F. Smet, J. C. Martins and Z. Hens. Short-chain alcohols strip X-type ligands and quench the luminescence of PbSe and CdSe quantum dots, acetonitrile does not. Journal of the American Chemical Society 134 (51), 20705-20712 (2012).
71. V. M. Goldschmidt. Die gesetze der krystallochemie. Naturwissenschaften 14 (21), 477-485 (1926).
72. Z. Li, M. Yang, J.-S. Park, S.-H. Wei, J. J. Berry and K. Zhu. Stabilizing perovskite structures by tuning tolerance factor: formation of formamidinium and cesium lead iodide solid-state alloys. Chemistry of Materials 28 (1), 284-292 (2015).
73. W. Travis, E. Glover, H. Bronstein, D. Scanlon and R. Palgrave. On the application of the tolerance factor to inorganic and hybrid halide perovskites: a revised system. Chemical Science 7 (7), 4548-4556 (2016).
74. G. Kieslich, S. Sun and A. K. Cheetham. Solid-state principles applied to organic–inorganic perovskites: new tricks for an old dog. Chemical Science 5 (12), 4712-4715 (2014).
75. M. R. Filip, G. E. Eperon, H. J. Snaith and F. Giustino. Steric engineering of metal-halide perovskites with tunable optical band gaps. Nature Communications 5, 5757 (2014).
76. C. Wang, A. S. R. Chesman and J. J. Jasieniak. Stabilizing the cubic perovskite phase of CsPbI3 nanocrystals by using an alkyl phosphinic acid. Chemical Communications 53 (1), 232-235 (2017).

77. A. Swarnkar, A. R. Marshall, E. M. Sanehira, B. D. Chernomordik, D. T. Moore, J. A. Christians, T. Chakrabarti and J. M. Luther. Quantum dot–induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics. Science 354 (6308), 92-95 (2016).
78. J. Y. Woo, Y. Kim, J. Bae, T. G. Kim, J. W. Kim, D. C. Lee and S. Jeong. Highly stable cesium lead halide perovskite nanocrystals through in situ lead halide inorganic passivation. Chemistry of Materials 29 (17), 7088-7092 (2017).
79. Q. Jing, M. Zhang, X. Huang, X. Ren, P. Wang and Z. Lu. Surface passivation of mixed-halide perovskite CsPb(BrxI1−x)3 nanocrystals by selective etching for improved stability. Nanoscale 9 (22), 7391-7396 (2017).
80. F. Liu, Y. Zhang, C. Ding, S. Kobayashi, T. Izuishi, N. Nakazawa, T. Toyoda, T. Ohta, S. Hayase, T. Minemoto, K. Yoshino, S. Dai and Q. Shen. Highly luminescent phase-stable CsPbI3 perovskite quantum dots achieving near 100% absolute photoluminescence quantum yield. ACS Nano 11 (10), 10373-10383 (2017).
81. W. k. Koh, S. Park and Y. Ham. Phosphonic acid stabilized colloidal CsPbX3 (X= Br, I) perovskite nanocrystals and their surface chemistry. ChemistrySelect 1 (13), 3479-3482 (2016).
82. Q. A. Akkerman, D. Meggiolaro, Z. Dang, F. De Angelis and L. Manna. Fluorescent alloy CsPbxMn1–xI3 perovskite nanocrystals with high structural and optical stability. ACS Energy Letters 2 (9), 2183-2186 (2017).
83. S. Dastidar, D. A. Egger, L. Z. Tan, S. B. Cromer, A. D. Dillon, S. Liu, L. Kronik, A. M. Rappe and A. T. Fafarman. High chloride doping levels stabilize the perovskite phase of cesium lead iodide. Nano Letters 16 (6), 3563-3570 (2016).
84. R. J. Sutton, G. E. Eperon, L. Miranda, E. S. Parrott, B. A. Kamino, J. B. Patel, M. T. Hörantner, M. B. Johnston, A. A. Haghighirad and D. T. Moore. Bandgap‐tunable cesium lead halide perovskites with high thermal stability for efficient solar cells. Advanced Energy Materials 6 (8) (2016).

85. H. C. Wang, S. Y. Lin, A. C. Tang, B. P. Singh, H. C. Tong, C. Y. Chen, Y. C. Lee, T. L. Tsai and R. S. Liu. Mesoporous silica particles integrated with all‐inorganic CsPbBr3 perovskite quantum‐dot nanocomposites (MP‐PQDs) with high stability and wide color gamut used for backlight display. Angewandte Chemie International Edition 55 (28), 7924-7929 (2016).
86. H. Huang, B. Chen, Z. Wang, T. F. Hung, A. S. Susha, H. Zhong and A. L. Rogach. Water resistant CsPbX3 nanocrystals coated with polyhedral oligomeric silsesquioxane and their use as solid state luminophores in all-perovskite white light-emitting devices. Chemical Science 7 (9), 5699-5703 (2016).
87. C. Sun, Y. Zhang, C. Ruan, C. Yin, X. Wang, Y. Wang and W. W. Yu. Efficient and stable white LEDs with silica-coated inorganic perovskite quantum dots. Advanced Materials 28 (45), 10088-10094 (2016).
88. A. Loiudice, S. Saris, E. Oveisi, D. T. Alexander and R. Buonsanti. CsPbBr3 QD/AlOx inorganic nanocomposites with exceptional stability in water, light and heat. Angewandte Chemie International Edition (2017).
89. G. Li, F. W. R. Rivarola, N. J. L. K. Davis, S. Bai, T. C. Jellicoe, F. de la Peña, S. Hou, C. Ducati, F. Gao, R. H. Friend, N. C. Greenham and Z.-K. Tan. Highly efficient perovskite nanocrystal light-emitting diodes enabled by a universal crosslinking method. Advanced Materials 28 (18), 3528-3534 (2016).
90. Y. Wei, X. Deng, Z. Xie, X. Cai, S. Liang, P. a. Ma, Z. Hou, Z. Cheng and J. Lin. Enhancing the stability of perovskite quantum dots by encapsulation in crosslinked polystyrene beads via a swelling-shrinking strategy toward superior water resistance. Advanced Functional Materials 27 (39), 1703535 (2017).
91. F. Palazon, F. Di Stasio, Q. A. Akkerman, R. Krahne, M. Prato and L. Manna. Polymer-free films of inorganic halide perovskite nanocrystals as UV-to-white color-conversion layers in LEDs. Chemistry of Materials 28 (9), 2902-2906 (2016).
92. W. Xu, Z. Cai, F. Li, J. Dong, Y. Wang, Y. Jiang and X. Chen. Embedding lead halide perovskite quantum dots in carboxybenzene microcrystals improves stability. Nano Research 10 (8), 2692-2698 (2017).

93. J. Ren, X. Dong, G. Zhang, T. Li and Y. Wang. Air-stable and water-resistant all-inorganic perovskite quantum dot films for white-light-emitting applications. New Journal of Chemistry 41 (22), 13961-13967 (2017).
94. J. Song, J. Li, X. Li, L. Xu, Y. Dong and H. Zeng. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3). Advanced Materials 27 (44), 7162-7167 (2015).
95. H. Huang, H. Lin, S. V. Kershaw, A. S. Susha, W. C. H. Choy and A. L. Rogach. Polyhedral oligomeric silsesquioxane enhances the brightness of perovskite nanocrystal-based green light-emitting devices. The Journal of Physical Chemistry Letters 7 (21), 4398-4404 (2016).
96. X. Zhang, H. Lin, H. Huang, C. Reckmeier, Y. Zhang, W. C. H. Choy and A. L. Rogach. Enhancing the brightness of cesium lead halide perovskite nanocrystal based green light-emitting devices through the interface engineering with perfluorinated ionomer. Nano Letters 16 (2), 1415-1420 (2016).
97. J. Pan, L. N. Quan, Y. Zhao, W. Peng, B. Murali, S. P. Sarmah, M. Yuan, L. Sinatra, N. M. Alyami, J. Liu, E. Yassitepe, Z. Yang, O. Voznyy, R. Comin, M. N. Hedhili, O. F. Mohammed, Z. H. Lu, D. H. Kim, E. H. Sargent and O. M. Bakr. Highly efficient perovskite-quantum-dot light-emitting diodes by surface engineering. Advanced Materials 28 (39), 8718-8725 (2016).
98. J. Li, L. Xu, T. Wang, J. Song, J. Chen, J. Xue, Y. Dong, B. Cai, Q. Shan, B. Han and H. Zeng. 50-fold EQE improvement up to 6.27% of solution-processed all-inorganic perovskite CsPbBr3 QLEDs via surface ligand density control. Advanced Materials 29 (5), 1603885 (2017).
99. T. Chiba, K. Hoshi, Y.-J. Pu, Y. Takeda, Y. Hayashi, S. Ohisa, S. Kawata and J. Kido. High-efficiency perovskite quantum-dot light-emitting devices by effective washing process and interfacial energy level alignment. ACS Applied Materials & Interfaces 9 (21), 18054-18060 (2017).
100. X. Zhang, B. Xu, J. Zhang, Y. Gao, Y. Zheng, K. Wang and X. W. Sun. All‐inorganic perovskite nanocrystals for high‐efficiency light emitting diodes: dual‐phase CsPbBr3‐CsPb2Br5 composites. Advanced Functional Materials 26 (25), 4595-4600 (2016).

101. P. Liu, W. Chen, W. Wang, B. Xu, D. Wu, J. Hao, W. Cao, F. Fang, Y. Li and Y. Zeng. Halide-rich synthesized cesium lead bromide perovskite nanocrystals for light-emitting diodes with improved performance. Chemistry of Materials 29 (12), 5168-5173 (2017).
102. Q. Shan, J. Li, J. Song, Y. Zou, L. Xu, J. Xue, Y. Dong, C. Huo, J. Chen and B. Han. All-inorganic quantum-dot light-emitting diodes based on perovskite emitters with low turn-on voltage and high humidity stability. Journal of Materials Chemistry C 5 (18), 4565-4570 (2017).
103. A. J. Petro. The dipole moment of the carbon-carbon bond. Journal of the American Chemical Society 80 (16), 4230-4232 (1958).

無法下載圖示 全文公開日期 2023/07/30 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE