簡易檢索 / 詳目顯示

研究生: 杉諾安
Noel Alberto Sanchez Alvarado
論文名稱: 抑制萊頓弗羅斯特的解決方法和技術
A pursuit of solutions and technologies for Leidenfrost suppression
指導教授: 曾修暘
Hsiu-Yang Tseng
口試委員: 侯欣翰
Hsin-Han Hou
陳羽薰
Yu-Hsun Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 49
外文關鍵詞: wickability
相關次數: 點閱:161下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報


In this thesis, a surface modification approach through the spraying of sugar sacrificial particles and a study of the spraying distance on the quenching performance are highlighted. This approach intends to reduce the gap between commercial and research applied heat transfer devices for a user-friendly, affordable, and robust platform that allows rapid quenching by increasing the surface roughness and wickability properties. The use of polymer substrates also allows the implementation of heat dissipation electronic industry and primarily for future cryopreservation platform that facilitates high-cooling rates due to high-surface modification profile and easy handling for rewarming. This project intends to move forward with cell/tissue applications and will be optimized to serve this purpose in future works.

Abstract ..........................................................................................................................I Acknowledgements .......................................................................................................II Content .........................................................................................................................III Index of figures……………………………………………………………………….IV Index of tables ………………………………………………………………………VII Chapter 1 Cryopreservation ........................................................................................... 1 1.1 Mechanisms of cryopreservation: Slow-freezing vs Vitrification ........................ 2 1.2 Insights of vitrification: Understanding the temperature phase in vitrification .....5 1.3 Commercial vitrification devices: Cryo-carriers………………………………....6 Chapter 2 Leidenfrost effect ......................................................................................... 8 2.1 Liquid levitation phenomenon ..............................................................................8 2.2 Understanding the Leidenfrost Effect ...................................................................9 2.3 Methods to improve the heat transfer performance in pool boiling.......................10 2.4 Motivation of study……………………………………………….......................14 Chapter 3 Surface modification on porous surface using sacrificial particles ............ 15 3.1 Device concept ..................................................................................................15 3.2 Materials and Methods ........................................................................................16 3.3 Results and discussions .......................................................................................19 3.4 Conclusions .........................................................................................................28 Chapter 4 Pilot study ...................................................................................................29 4.1 Droplet-based vitrification ..................................................................................29 4.2 Droplet-impingement on a cold-solid surface: Physical mechanism ..................31 4.3 Development of cryostage for vitrification ..........................................................32 Statement ..................................................................................................................... 37 References ...................................................................................................................39

[1] Chatterjee, A., Saha, D., Glasmacher, B., & Hofmann, N. (2016). Chilling without regrets: Deciphering the effects of cryopreservation on the epigenetic properties of frozen cells will benefit the applications of cryo‐technology. EMBO reports, 17 (3), 292-295.
[2] Penzias, A., Bendikson, K., Falcone, T., Hansen, K., Hill, M., Hurd, W., ... & Nagy, Z. P. (2021). A review of best practices of rapid-cooling vitrification for oocytes and embryos: a committee opinion. Fertility and Sterility, 115(2), 305-310.
[3] Cytologics Bio. How to Freeze Cells: 3 Essential Considerations. Retrieved from https://cytologicsbio.com/how-to-freeze-cells-3-essential-considerations.
[4] Britannica. Cryopreservation. In Encyclopedia Britannica. Retrieved from https://www.britannica.com/technology/cryopreservation.
[5] Mukaida, T., & Oka, C. (2012). Vitrification of oocytes, embryos and blastocysts. Best Practice & Research Clinical Obstetrics & Gynaecology, 26(6), 789-803.
[6] Jang, T. H., Park, S. C., Yang, J. H., Kim, J. Y., Seok, J. H., Park, U. S., ... & Han, J. (2017). Cryopreservation and its clinical applications. Integrative medicine research, 6(1), 12-18.
[7] Ribeiro, J. C., Carrageta, D. F., Bernardino, R. L., Alves, M. G., & Oliveira, P. F. (2022). Aquaporins and animal gamete cryopreservation: Advances and future challenges. Animals, 12(3), 359.
[8] Cui, M., Zhan, T., Yang, J., Dang, H., Yang, G., Han, H., ... & Xu, Y. (2023). Droplet Generation, Vitrification, and Warming for Cell Cryopreservation: A Review. ACS Biomaterials Science & Engineering, 9(3), 1151-1163.
[9] Vanderzwalmen, P., Ectors, F., Panagiotidis, Y., Schuff, M., Murtinger, M., & Wirleitner, B. (2020). The evolution of the cryopreservation techniques in reproductive medicine—exploring the character of the vitrified state intra-and extracellularly to better understand cell survival after cryopreservation. Reproductive Medicine, 1(2), 142-157.
[10] Vajta, G., Holm, P., Kuwayama, M., Booth, P. J., Jacobsen, H., Greve, T., & Callesen, H. (1998). Open pulled straw (OPS) vitrification: a new way to reduce cryoinjuries of bovine ova and embryos. Molecular Reproduction and Development: Incorporating Gamete Research, 51(1), 53-58.
[11] Lane, M., Schoolcraft, W. B., Gardner, D. K., & Phil, D. (1999). Vitrification of mouse and human blastocysts using a novel cryoloop container-less technique. Fertility and sterility, 72(6), 1073-1078.
[12] Kuwayama, M. (2007). Highly efficient vitrification for cryopreservation of human oocytes and embryos: the Cryotop method. Theriogenology, 67(1), 73-80.
[13] Vanderzwalmen, P., Bertin, G., Debauche, C. H., Standaert, V., Bollen, N., Roosendaal, E. V., ... & Zech, N. (2003). Vitrification of human blastocysts with the Hemi‐Straw carrier: application of assisted hatching after thawing. Human Reproduction, 18(7), 1504-1511.
[14] Kuwayama, M., Vajta, G., Ieda, S., & Kato, O. (2005). Comparison of open and closed methods for vitrification of human embryos and the elimination of potential contamination. Reproductive biomedicine online, 11(5), 608-614.
[15] IVF Store. Vitavitro OpenPulled Straw Vitrification Device. Retrieved from https://us.ivfstore.com/collections/vitrification-devices/products/vitavitro-openpulled-straw-vitrification-device.
[16] Lane, M., Bavister, B. D., Lyons, E. A., & Forest, K. T. (1999). Containerless vitrification of mammalian oocytes and embryos. Nature biotechnology, 17(12), 1234-1236.
[17] Kitazato IVF. Cryotop Vitrification. Retrieved from https://www.kitazatoivf.com
[18] Zhang, X., Catalano, P. N., Gurkan, U. A., Khimji, I., & Demirci, U. (2011). Emerging technologies in medical applications of minimum volume vitrification. Nanomedicine, 6(6), 1115-1129.
[19] Lopez, E., Cipri, K., & Naso, V. (2012). Technologies for cryopreservation: Overview and innovation. INTECH Open Access Publisher.
[20] Shi, M., Qiu, J., Feng, S., Zhang, L., Zhao, Y., Lu, T. J., & Xu, F. (2021). Janus vitrification of droplet via cold Leidenfrost phenomenon. Small, 17(17), 2007325.
[21] Vakarelski, I. U., Patankar, N. A., Marston, J. O., Chan, D. Y., & Thoroddsen, S. T. (2012). Stabilization of Leidenfrost vapour layer by textured superhydrophobic surfaces. Nature, 489(7415), 274-277.
[22] Walker, J. (2010). Boiling and the Leidenfrost effect. Fundamentals of physics, E10-1.
[23] Hu, H., Xu, C., Zhao, Y., Ziegler, K. J., & Chung, J. N. (2017). Boiling and quenching heat transfer advancement by nanoscale surface modification. Scientific Reports, 7(1), 6117.
[24] Swarnkar, A., & Lakhera, V. J. (2021). Ultrasonic augmentation in pool boiling heat transfer over external surfaces: A review. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 235(11), 2099-2111.
[25] Alangar, S. (2017). Effect of boiling surface vibration on heat transfer. Heat and Mass Transfer, 53, 73-79.
[26] Grassi, W., & Testi, D. (2019). A new hydrodynamic approach for jet impingement boiling CHF. International Communications in Heat and Mass Transfer, 104, 83-88.
[27] Kano, I. (2013, October). Boiling heat transfer enhancement by utilizing Electrohydrodynamic (EHD) force in micro sized space. In 2013 IEEE Industry Applications Society Annual Meeting (pp. 1-8). IEEE.
[28] Chu, H., Xu, N., Yu, X., Jiang, H., Ma, W., & Qiao, F. (2022). Review of surface modification in pool boiling application: Coating manufacturing process and heat transfer enhancement mechanism. Applied Thermal Engineering, 119041.
[29] Fan, L. W., Li, J. Q., Zhang, L., Yu, Z. T., & Cen, K. F. (2016). Pool boiling heat transfer on a nanoscale roughness-enhanced superhydrophilic surface for accelerated quenching in water. Applied Thermal Engineering, 109, 630-639.
[30] Li, J. Q., Zhang, J. Y., Mou, L. W., Zhang, Y. H., & Fan, L. W. (2019). Enhanced transitional heat flux by wicking during transition boiling on microporous hydrophilic and superhydrophilic surfaces. International Journal of Heat and Mass Transfer, 141, 835-844.
[31] Kumar, C. S., Kumar, G. U., Arenales, M. R. M., Hsu, C. C., Suresh, S., & Chen, P. H. (2018). Elucidating the mechanisms behind the boiling heat transfer enhancement using nano-structured surface coatings. Applied Thermal Engineering, 137, 868-891.
[32] Kozlov, N., & Keßler, O. (2016). Influencing on liquid quenching by surface structuring. International Journal of Thermal Sciences, 101, 133-142.
[33] Kim, B. S., Choi, G., Shin, S., Gemming, T., & Cho, H. H. (2016). Nano-inspired fluidic interactivity for boiling heat transfer: impact and criteria. Scientific reports, 6(1), 34348.
[34] Ye, Y. M., Alvarado, N. A., Lizama, J. H., Hu, Y. M., & Tseng, H. Y. (2022). Superior influence of surface wickability over surface morphology on critical heat flux enhancement during quenching in liquid nitrogen. Surfaces and Interfaces, 33, 102268.
[35] Bergman, T. L., Lavine, A. S., Incropera, F. P., & DeWitt, D. P. (2011). Introduction to heat transfer. John Wiley & Sons.
[36] Tseng, H. Y., Ye, Y. M., Lizama, J. H., Alvarado, N. A., & Hu, Y. M. (2022). Amplification of surface roughness on polymers utilizing sacrificial micro-particles to enhance heat transfer for quenching in liquid nitrogen. Surfaces and Interfaces, 29, 101745.
[37] Rahman, M. M., Olceroglu, E., & McCarthy, M. (2014). Role of wickability on the critical heat flux of structured superhydrophilic surfaces. Langmuir, 30(37), 11225-11234.
[38] Allred, T. P., Weibel, J. A., & Garimella, S. V. (2019). The petal effect of parahydrophobic surfaces offers low receding contact angles that promote effective boiling. International Journal of Heat and Mass Transfer, 135, 403-412.
[39] Yang, R., Zuo, S., Song, B., Mao, H., Huang, Z., Wu, Y., ... & Xia, C. (2020). Hollow mesoporous microspheres coating for super-hydrophobicity wood with high thermostability and abrasion performance. Polymers, 12(12), 2856.
[40] O'Hanley, H., Coyle, C., Buongiorno, J., McKrell, T., Hu, L. W., Rubner, M., & Cohen, R. (2013). Separate effects of surface roughness, wettability, and porosity on the boiling critical heat flux. Applied Physics Letters, 103(2).
[41] He, X., Park, E. Y., Fowler, A., Yarmush, M. L., & Toner, M. (2008). Vitrification by ultra-fast cooling at a low concentration of cryoprotectants in a quartz micro-capillary: a study using murine embryonic stem cells. Cryobiology, 56(3), 223-232.
[42] Li, J. Q., Zhang, J. Y., Mou, L. W., Zhang, Y. H., & Fan, L. W. (2019). Enhanced transitional heat flux by wicking during transition boiling on microporous hydrophilic and superhydrophilic surfaces. International Journal of Heat and Mass Transfer, 141, 835-844.
[43] Li, J. Q., Mou, L. W., Zhang, J. Y., Zhang, Y. H., & Fan, L. W. (2018). Enhanced pool boiling heat transfer during quenching of water on superhydrophilic porous surfaces: Effects of the surface wickability. International Journal of Heat and Mass Transfer, 125, 494-505.
[44] Kang, J. Y., Lee, G. C., Kaviany, M., Park, H. S., Moriyama, K., & Kim, M. H. (2017). Minimum film-boiling quench temperature increase by CuO porous-microstructure coating. Applied Physics Letters, 110(4).
[45] Y. M. Hu, Influences of porous plastic surface on cooling rate enhancement and boiling heat transfer, Master thesis, Dept. Mech. Eng., Natl. Taiwan Univ. of Sci. and Tech., Taipei, Taiwan, 2021.
[46] de Vries, R. J., Banik, P. D., Nagpal, S., Weng, L., Ozer, S., van Gulik, T. M., ... & Uygun, K. (2018). Bulk droplet vitrification: an approach to improve large-scale hepatocyte cryopreservation outcome. Langmuir, 35(23), 7354-7363.
[47] Song, Y. S., Adler, D., Xu, F., Kayaalp, E., Nureddin, A., Anchan, R. M., ... & Demirci, U. (2010). Vitrification and levitation of a liquid droplet on liquid nitrogen. Proceedings of the National Academy of Sciences, 107(10), 4596-4600.
[48] Akiyama, Y., Shinose, M., Watanabe, H., Yamada, S., & Kanda, Y. (2019). Cryoprotectant-free cryopreservation of mammalian cells by superflash freezing. Proceedings of the National Academy of Sciences, 116(16), 7738-7743.
[49] Zhan, L., Guo, S. Z., Kangas, J., Shao, Q., Shiao, M., Khosla, K., ... & Bischof, J. (2021). Conduction cooling and plasmonic heating dramatically increase droplet vitrification volumes for cell cryopreservation. Advanced Science, 8(11), 2004605.
[50] Xia, Y., Huang, L. X., Chen, H., Li, J., Chen, K. K., Hu, H., ... & Guo, S. S. (2021). Acoustic droplet vitrification method for high-efficiency preservation of rare cells. ACS Applied Materials & Interfaces, 13(11), 12950-12959.
[51] Zhang, X., Liu, X., Wu, X., & Min, J. (2020). Impacting-freezing dynamics of a supercooled water droplet on a cold surface: Rebound and adhesion. International Journal of Heat and Mass Transfer, 158, 119997.

QR CODE