簡易檢索 / 詳目顯示

研究生: 陳彥妤
Yen-Yu Chen
論文名稱: 利用靜電紡絲製備用於運輸載體的pH敏感型聚縮酮/聚乳酸微米串珠纖維
Preparation of polyketal/Poly(Lactic Acid) bead-on-string microfibers for delivery vehicle by electrospinning
指導教授: 何明樺
Ming-Hua Ho
口試委員: 謝學真
Hsyue-Jen Hsieh
高震宇
Chen-Yu Kao
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 146
中文關鍵詞: 靜電紡絲運輸載體微米串珠纖維
外文關鍵詞: electrospinning, delivery vehicle, bead-on-string microfibers
相關次數: 點閱:275下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

聚縮酮(Polyketal, PK)常用乳化溶劑蒸發技術(Emulsion-solvent evaporation, ESE)製備顆粒,因具有酸敏感性且產生中性的降解產物,不會引起免疫反應,在藥物釋放被廣泛的應用。在本研究中,我們利用靜電紡絲(electrospinning)製備聚縮酮/聚乳酸(poly lactic acid, PLA)微米串珠(bead-on-string)纖維,並分析微米串珠纖維的物理性質、釋放行為和生物相容性(biocompatibility)。
我們使用逐步聚合法(step-growth polymerization)進行縮酮反應,合成PK共聚物,再將PK/PDLLA(Poly(D,L-lactic acid),PDLLA)和PK/PLLA(Poly(L-lactic acid),PLLA)的共混物,通過靜電紡絲製備出PK/PDLLA和PK/PLLA 微米串珠纖維。透過掃描式電子顯微鏡照片,我們得知串珠的比例會隨著電壓的提高、工作距離的減少與PK含量的提高而增加,由於串珠納米纖維中的串珠是裝載藥物的主要位置,因此,串珠數量是串珠纖維包封能力的重要因素之一。在所有的參數中,調整PK/PDLLA和PK/PLLA的重量比是調整材料型態最為有效的方法,因此,我們將利用不同PK/PDLLA和PK/PLLA的重量比來進行材料特性測試與細胞實驗,其他參數固定於可以穩定的進行靜電紡絲並得到最高串珠比例的條件(電壓10kV、流速0.2ml/hr、工作距離10cm、PK/PDLLA和PK/PLLA在二氯甲烷(dichloromethane, DCM)中的濃度分別為89mg/ml (8wt%) 和44.5mg/ml (4wt%)。
當PK含量夠高時(PK-PDLLA2:1、PK-PDLLA1:1),PK/PDLLA微米串珠纖維保留了PK微米顆粒的pH敏感性。相比之下,在PK/PLLA微米串珠纖維實驗中,雖然PK-PLLA2:1時仍保留了PK微米顆粒的pH敏感性,但因為PLLA比PDLLA更為疏水且降解時間更長,所以pH對膨潤及重量損失的影響程度比PK/PDLLA系統低。
我們在PK/PDLLA和PK/PLLA微米串珠纖維中包覆亞甲基藍(methylene blue)以進行控制釋放實驗。釋放曲線表明當PK/PDLLA和PK/PLLA共混物被製備成微米串珠纖維後,當PK在PK/PDLLA系統中的含量足夠時,藥物釋放呈現明顯pH敏感性,此結果與膨潤性的結果相呼應。相對地, PK/PLLA的pH敏感性影響沒有明顯的表現出來,此結果可能是因為PLLA較為疏水,使得PK/PLLA共混物中的PK不易與外界環境中的水接觸而產生反應。過去的文獻中,在pH=4.5的環境下,純PK粒需6小時累積釋放值才能達到總量的50%,與本研究中PK含量高的PK/PDLLA微米串珠纖維(PK-PDLLA2:1)進行藥物釋放結果的比較,在30分鐘時累積釋放值就能達到總量的82%,因此快速釋放時PK-PDLLA2:1微米串珠纖維具有較佳的優勢。
細胞培養的結果證實含PK的微米串珠纖維具有良好的生物相容性,根據以上結果,本研究開發的PK/PDLLA和PK/PLLA 微米串珠纖維具有pH敏感性與良好的生物相容性,有潛力成為治療急性炎症疾病的藥物載體。


PK is often used to prepare particles by emulsion process. Because of its acid-sensitivity and neutral degradation products, PK doesn’t cause any immune response and is thus widely applied in drug delivery. In this study, polyketal/ poly lactic acid bead-on-string microfibers were prepared by electrospinning processes, where the physical properties, release profile and biocompatibility of microfibers were analyzed.
PK was synthesized via the acetal exchange reaction. PDLLA and PLLA were blended with PK to prepare bead-on-string microfibers by electrospinning. According to SEM images, the proportion of beads increased with the increase of voltage, the reduction of working distance and the increase of PK content. As beads in bead-on-string nanofibers were the main reservoirs to load drugs, bead number is one of important factors to indicate the encapsulation capability of the bead-on-string fibers. Among all the parameters, adjusting the weight ratio of PK/PDLLA and PK/PLLA is the most effective way to get different ratio of beads. Therefore, we are going to use different weight ratio of PK/PDLLA and PK/PLLA to test the characteristics of materials and MTT assay. In the experiment, other optimized paramaters are fixed under the conditions that can stably carry out electrospinning and obtain the highest ratio of beads (voltage: 10kV, flow rate: 0.2ml/hr, working distance: 10cm, concentration: 89mg PK/PDLLA /ml dichloromethane (8wt%) and 44.5mg PK/PLLA /ml dichloromethane (4wt%).
The results of swelling and weight loss test showed that PK-PDLLA and PK-PLLA bead-on-string microfibers was pH sensitive as PK particles when the content of PK was sufficient (PK-PDLLA2:1, PK-PDLLA1:1). The pH-dependent swelling and weight loss of PK/PLLA microfibers was lower than PK/PDLLA due to the hydrophobic of PLLA.
The release experiment was carried out by loading methylene blue in PK/PDLLA and PK/PLLA bead-on-string microfibers. The releasing result indicated that when the content of PK was sufficient (PK-PDLLA2:1, PK-PDLLA1:1), the release of encapsulated drugs was dominated by the pH value, which was corresponded to the findings from swelling. However, the pH sensitivity of PK-PLLA microfibers was not obvious for drug release. It is because the interaction between PK and environmental water was limited by the hydrophobicity of PLLA. In previous researches, pure PK particles took 6 hours to release 50% encapsulated drugs after the low-pH stimuli. On the contrary, PK/PDLLA bead-on-string microfibers (PK-PDLLA2:1) took 30 minutes to release 82% encapsulated drugs, revealing the potential of PK/PDLLA microfibers in pH-responsive controlled release.
The results of cell (7F2) culture confirmed that the PK fibers were biocompatible. According to the pH-sensitivity and biocompatibiliuty, the PK/PDLLA and PK/PLLA bead-on-string microfibers developed in this research would be a promising drug carrier for the treatment of acute inflammatory diseases.

摘要 Abstract 誌謝 目錄 表目錄 圖目錄 專有名詞及縮寫 第一章 緒論 第二章 文獻回顧 2.1 急性炎症疾病 2.2 藥物釋放系統 2.3 生物可降解性之高分子藥物載體 2.4 生物可降解性之智慧型高分子 2.5 以乳化溶劑蒸發技術製備PK產物 2.6 靜電紡絲原理 第三章 實驗材料與方法 3.1實驗藥品 3.2實驗儀器 3.3實驗步驟 3.3.1 PK共聚物合成 3.3.2製備PK/PDLLA微米串珠纖維 3.3.3製備PK/PLLA微米串珠纖維 3.4 材料鑑定與性質鑑定 3.4.1 PK共聚物分子量(GPC)分析 3.4.2 PK共聚物衰減全反射-傅立葉轉換紅外線光譜(ATR-FTIR)分析 3.4.4掃描式電子顯微鏡(SEM)分析 3.4.5衰減全反射-傅立葉轉換紅外線光譜(ATR-FTIR)分析 3.4.6 接觸角(Contact Angle)量測分析 3.4.7 膨潤性(Swelling)測試 3.4.8 重量損失(Weight Loss)測試 3.5 體外釋放 3.6 體外細胞實驗 3.6.1 PK/PDLLA與PK/PLLA微米串珠纖維製作 3.6.2實驗操作 3.6.3 細胞來源 3.6.4 培養基配製 3.6.5 細胞培養 3.6.6 細胞冷凍保存 3.6.7 細胞解凍及培養 3.6.8 細胞計數 3.6.9 粒線體活性測試 第四章 實驗結果與討論 4.1 PK共聚物合成與物性評估 4.1.1 PK共聚物分子量分析 4.1.2 PK共聚物官能基分析 4.1.3 PK共聚物產率評估 4.2 PK/PDLLA微米串珠纖維製程討 4.2.1 電壓影響 4.2.2 流速的影響 4.2.3 工作距離的影響 4.2.4 PK/PDLLA共混物濃度的影響 4.2.5 比例的影響 4.3 PK/PLLA微米串珠纖維製程探討 4.3.1 電壓的影響 4.3.2 工作距離的影響 4.3.3 比例的影響 4.4 官能基分析 4.5 親疏水性分析 4.6 膨潤性檢測 4.6.1 PK/PDLLA微米串珠纖維的膨潤性檢測 4.6.2 PK/PLLA微米串珠纖維的膨潤性檢測 4.7 重量損失測試 4.7.1 PK/PDLLA微米串珠纖維的重量損失測試 4.7.2 PK/PLLA微米串珠纖維的重量損失測試 4.8 體外控制釋放 4.8.1 PK/PDLLA微米串珠纖維的釋放 4.8.2 PK/PLLA微米串珠纖維的釋放 4.9 生物相容性 第五章 結論 參考文獻 Appendix

1. Angus, D.C., W.T. LindeZwirble, J. Lidicker, G. Clermont, J. Carcillo, and M.R. Pinsky, "Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care" Society of Critical Care Medicine; 2001; 29: 1303-1310
2. Goodman, R.B., J. Pugin, J.S. Lee, and M.A. Matthay, "Cytokine-mediated inflammation in acute lung injury" Cytokine & growth factor reviews; 2003; 14: 523-535
3. Binauld, S., and M.H. Stenzel, "Acid-degradable polymers for drug delivery: a decade of innovation" Chemical communications; 2013; 49: 2082-2102
4. Anderson, J.M., and M.S. Shive, "Biodegradation and biocompatibility of PLA and PLGA microspheres" Advanced drug delivery reviews; 1997; 28: 5-24
5. Svenson, S., "Carrier-based drug delivery" ACS Publications; 2004: 3-16
6. Chaubal, M.V., A.S. Gupta, S.T. Lopina, and D.F. Bruley, "Polyphosphates and other phosphorus-containing polymers for drug delivery applications" Critical Reviews™ in Therapeutic Drug Carrier Systems; 2003; 20: 295-315
7. Peniche, C., W. ArgüellesMonal, H. Peniche, and N. Acosta, "Chitosan: an attractive biocompatible polymer for microencapsulation" Macromolecular Bioscience; 2003; 3:511-520
8. Stuart, M.A.C., W.T. Huck, J. Genzer, M. Müller, C. Ober, M. Stamm, G.B. Sukhorukov, I. Szleifer, V.V. Tsukruk, and M. Urban, "Emerging applications of stimuli-responsive polymer materials" Nature materials; 2010; 9: 101-113
9. Fortuni, B., T. Inose, M. Ricci, Y. Fujita, I. Van Zundert, A. Masuhara, E. Fron, H. Mizuno, L. Latterini, and S. Rocha, "Polymeric engineering of nanoparticles for highly efficient multifunctional drug delivery systems" Scientific reports; 2019; 9: 1-13
10. Beatrice, F., I. Tomoko, M. Ricci, F. Yasuhiko, M. Akito, F. Eduard, M. Hideaki, L. Loredana, S. Rocha, and U. Hiroshi, "Polymeric engineering of nanoparticles for highly efficient multifunctional drug delivery systems" Scientific Reports (Nature Publisher Group); 2019; 9: 1-11
11. Shi, G., Y. Che, Y. Zhou, X. Bai, and C. Ni, "Synthesis of polyglycolic acid grafting from sodium alginate through direct polycondensation and its application as drug carrier" Journal of materials science; 2015; 50: 7835-7841
12. Guo, Z., S. Wu, H. Li, Q. Li, G. Wu, and C. Zhou, " In vitro evaluation of electrospun PLGA/PLLA/PDLLA blend fibers loaded with naringin for guided bone regeneration" Dental materials journal; 2018: 1-7
13. Su, Y., B. Zhang, R. Sun, W. Liu, Q. Zhu, X. Zhang, R.Wang, and C. Chen, "PLGA-based biodegradable microspheres in drug delivery: recent advances in research and application" Drug Delivery; 2021; 28: 1397-1418
14. Kumari, A., S.K. Yadav, and S.C. Yadav, "Biodegradable polymeric nanoparticles based drug delivery systems" Colloids and surfaces B: biointerfaces; 2010; 75: 1-18
15. Prabaharan, M., and J. Mano, "Chitosan-based particles as controlled drug delivery systems" Drug delivery; 2004; 12: 41-57
16. Ribeiro, J.S., E.A. Bordini, J.A. Ferreira, L. Mei, N. Dubey, J.C. Fenno, E. Piva, R.G. Lund, A. Schwendeman, and M.C. Bottino, "Injectable MMP-responsive nanotube-modified gelatin hydrogel for dental infection ablation" ACS applied materials & interfaces; 2020; 12: 16006-16017
17. Barrera, D.A., E. Zylstra, P.T. Lansbury, and R. Langer, "Synthesis and RGD peptide modification of a new biodegradable copolymer: poly (lactic acid-co-lysine)" Journal of the American Chemical Society; 1993; 115: 11010-11011
18. Yang, J., J. Bei, and S. Wang, "Enhanced cell affinity of poly (D, L-lactide) by combining plasma treatment with collagen anchorage" Biomaterials; 2002; 23: 2607-2614
19. Bhattarai, S.R., N. Bhattarai, P. Viswanathamurthi, H.K. Yi, P.H. Hwang, and H.Y., Kim, "Hydrophilic nanofibrous structure of polylactide; fabrication and cell affinity" Journal of Biomedical Materials Research Part A: An Official Journal of The Society for Biomaterials; 2006; 78: 247-257
20. Singh, M., K. Hemant, M. Ram, and H. Shivakumar, "Microencapsulation: A promising technique for controlled drug delivery" Research in pharmaceutical sciences; 2010; 5: 65
21. Chahibi, Y., M. Pierobon, S.O. Song, and I.F. Akyildiz, "A molecular communication system model for particulate drug delivery systems" IEEE Transactions on biomedical engineering; 2013; 60: 3468-3483
22. Ko, J., K. Park, Y.S. Kim, M.S. Kim, J.K. Han, K. Kim, R.W. Park, I.S. Kim, H.K. Song, and D.S. Lee, "Tumoral acidic extracellular pH targeting of pH-responsive MPEG-poly (β-amino ester) block copolymer micelles for cancer therapy" Journal of Controlled Release; 2007; 123: 109-115
23. Vargason, A.M., A.C. Anselmo, and S. Mitragotri, "The evolution of commercial drug delivery technologies" Nature Biomedical Engineering; 2021: 1-17
24. Régibeau, N., R.G. Tilkin, P. Compère, B. Heinrichs, and C. Grandfils, "Preparation of PDLLA based nanocomposites with modified silica by in situ polymerization: Study of molecular, morphological, and mechanical properties" Materials Today Communications; 2020; 25: 101610
25. Filippov, S., M. Hruby, C. Konak, H. Macková, M. Spirkova, and P. Stepanek, "Novel pH-responsive nanoparticles" Langmuir; 2008; 24: 9295-9301
26. Zheng, Y., L. Wang, L. Lu, Q. Wang, and B.C. Benicewicz, "pH and thermal dual-responsive nanoparticles for controlled drug delivery with high loading content" Acs Omega; 2017; 2: 3399-3405
27. Bae, Y., and K. Kataoka, "Intelligent polymeric micelles from functional poly (ethylene glycol)-poly (amino acid) block copolymers" Advanced drug delivery reviews; 2009; 61: 768-784
28. Gillies, E.R.; T.B. Jonsson, and J.M. Fréchet, "Stimuli-responsive supramolecular assemblies of linear-dendritic copolymers" Journal of the American Chemical Society; 2004; 126: 11936-11943
29. Wang, Y., B. Chang, and W. Yang, "pH-sensitive polyketal nanoparticles for drug delivery" Journal of nanoscience and nanotechnology; 2012; 12: 8266-8275
30. Heffernan, M.J., and N. Murthy, "Polyketal nanoparticles: a new pH-sensitive biodegradable drug delivery vehicle" Bioconjugate chemistry; 2005; 16: 1340-1342
31. Lee, S.; S.C. Yang, M.J. Heffernan, W.R. Taylor, and N. Murthy, "Polyketal microparticles: a new delivery vehicle for superoxide dismutase" Bioconjugate chemistry; 2007; 18: 4-7
32. Yang, S.C., M. Bhide, I.N. Crispe, R.H. Pierce, and N. Murthy, "Polyketal copolymers: a new acid-sensitive delivery vehicle for treating acute inflammatory diseases" Bioconjugate chemistry; 2008; 19: 1164-1169
33. Jain, R.A., "The manufacturing techniques of various drug loaded biodegradable poly (lactide-co-glycolide)(PLGA) devices" Biomaterials; 2000; 21: 2475-2490
34. Mathiowitz, E., W. Saltzman, A. Domb, P. Dor, and R. Langer, "Polyanhydride microspheres as drug carriers. II. Microencapsulation by solvent removal" Journal of Applied Polymer Science; 1988; 35: 755-774
35. Berkland, C.; M.J. Kipper, B. Narasimhan, K.K. Kim, and D.W. Pack, "Microsphere size, precipitation kinetics and drug distribution control drug release from biodegradable polyanhydride microspheres" Journal of Controlled Release; 2004; 94: 129-141
36. Stubbs, M., P.M. McSheehy, J.R. Griffiths, and C.L.Bashford, "Causes and consequences of tumour acidity and implications for treatment" Molecular medicine today; 2000; 6: 15-19
37. Leroux, J.C., "pH-responsive carriers for enhancing the cytoplasmic delivery of macromolecular drugs" Advanced drug delivery reviews; 2004; 56: 925-926
38. Anderson, J.M., and M.S. Shive, "Biodegradation and biocompatibility of PLA and PLGA microspheres" Advanced drug delivery reviews; 2012; 64: 72-82
39. Dailey, L., N. Jekel, L. Fink, T. Gessler, T. Schmehl, M. Wittmar, T. Kissel, and W. Seeger, "Investigation of the proinflammatory potential of biodegradable nanoparticle drug delivery systems in the lung" Toxicology and applied pharmacology; 2006; 215: 100-108
40. Chen, D., and H.Wang, "Novel pH-sensitive biodegradable polymeric drug delivery systems based on ketal polymers" Journal of nanoscience and nanotechnology; 2014; 14: 983-989
41. Tsai, T., C.Y. Kao, C.L. Chou, L.C. Liu, and T.C. Chou, "Protective effect of magnolol-loaded polyketal microparticles on lipopolysaccharide-induced acute lung injury in rats." Journal of microencapsulation; 2016; 33: 401-411
42. Guo, S., Y. Nakagawa, A. Barhoumi, W. Wang, C. Zhan, R. Tong, C. Santamaria, and D.S. Kohane, "Extended release of native drug conjugated in polyketal microparticles" Journal of the American Chemical Society; 2016; 138: 6127-6130
43. Lee, S., S.C. Yang, C.Y. Kao, R.H. Pierce, and N. Murthy, "Solid polymeric microparticles enhance the delivery of siRNA to macrophages in vivo" Nucleic acids research; 2009; 37: 1–10
44. Bodmeier, R., and J.W. McGinity, "The preparation and evaluation of drug-containing poly (dl-lactide) microspheres formed by the solvent evaporation method" Pharmaceutical research; 1987; 4: 465-471
45. Ogawa, Y., M. Yamamoto, H. Okada, T. Yashiki, and T. Shimamoto, "A new technique to efficiently entrap leuprolide acetate into microcapsules of polylactic acid or copoly (lactic/glycolic) acid" Chemical and Pharmaceutical Bulletin; 1988; 36: 1095-1103
46. Jeffery, H., S.S. Davis, and D.T. O'Hagan, "The preparation and characterization of poly (lactide-co-glycolide) microparticles. II. The entrapment of a model protein using a (water-in-oil)-in-water emulsion solvent evaporation technique" Pharmaceutical research; 1993; 10: 362-368
47. Soppimath, K.S., T.M. Aminabhavi, A.R. Kulkarni, and W.E. Rudzinski, "Biodegradable polymeric nanoparticles as drug delivery devices" Journal of controlled release; 2001; 70: 1-20
48. Chung, T.W., Y.Y. Huang, Y.L. Tsai, and Y.Z. Liu, "Effects of solvent evaporation rate on the properties of protein-loaded PLLA and PDLLA microspheres fabricated by emulsion-solvent evaporation process" Journal of microencapsulation; 2002; 19: 463-471
49. Kim, J. H., I. C. Kwon, Y. H. Kim, S. B. La, Y. T. Sohn, and S. Y. Jeong, "Preparation of biodegradable microspheres containing water-soluble drug, β-lactam antibiotic" Archives of Pharmacal Research; 1996; 19: 30-35
50. Wang, F.J., and C.H. Wang, "Effects of fabrication conditions on the characteristics of etanidazole spray-dried microspheres" Journal of microencapsulation; 2002; 19: 495-510
51. Unnithan, A.R., R. Arathyram, and C.S. Kim, "Electrospinning of Polymers for Tissue Engineering" Nanotechnology Applications for Tissue Engineering, Elsevier; 2015; 45-55
52. Li, D., and Y. Xia, "Electrospinning of nanofibers: reinventing the wheel" Advanced materials; 2004; 16: 1151-1170
53. Teo, W. E., and S. Ramakrishna, "A review on electrospinning design and nanofibre assemblies" Nanotechnology; 2006; 17: 89
54. Bhardwaj, N., and S.C. Kundu, "Electrospinning: a fascinating fiber fabrication technique" Biotechnology advances; 2010; 28: 325-347
55. Wang, B., Y. Wang, and T. Yin, and Q. Yu, "Applications of electrospinning technique in drug delivery" Chemical Engineering Communications; 2010; 197: 1315-1338
56. Akhgari, A., Z. Shakib, and S. Sanati, "A review on electrospun nanofibers for oral drug delivery" Nanomedicine Journal; 2017; 4, 197-207
57. Spasova, M., D. Paneva, N. Manolova, P. Radenkov, I. Rashkov, "Electrospun chitosan‐coated fibers of poly (L‐lactide) and poly (L‐lactide)/poly (ethylene glycol): preparation and characterization" Macromolecular bioscience; 2008; 8: 153-162
58. Khil, M.S., D.I. Cha, H.Y. Kim, I. S. Kim, and N. Bhattarai, "Electrospun nanofibrous polyurethane membrane as wound dressing" Journal of Biomedical Materials Research Part B: Applied Biomaterials: An Official Journal of The Society for Biomaterials; 2003; 67 (2): 675-679
59. Li, T., X. Ding, L. Tian, J. Hu, X. Yang, and S. Ramakrishna, "The control of beads diameter of bead-on-string electrospun nanofibers and the corresponding release behaviors of embedded drugs" Materials Science and Engineering: C; 2017; 74: 471-477
60. Xi, H., and H. Zhao, "Silk fibroin coaxial bead-on-string fiber materials and their drug release behaviors in different pH" Journal of materials science; 2019; 54: 4246-4258
61. Li, T., L. Liu, L. Wang, and X. Ding, "Solid drug particles encapsulated bead-on-string nanofibers: the control of bead number and its corresponding release profile" Journal of Biomaterials Science, Polymer Edition; 2019; 30: 1454-1469
62. Thien, D.V.H., "Preparation and application of chitosan electrosprayed nanoparticles and electrospun nanofibers" Master's Thesis, Institute of Chemical Engineering, National Taiwan University of Science and Technology; 2012; 39-77
63. Okutan, N., P. Terzi, and F. Altay, "Affecting parameters on electrospinning process and characterization of electrospun gelatin nanofibers" Food Hydrocolloids; 2014; 39: 19-26
64. Fang, J., H. Wang, H. Niu, T. Lin, and X. Wang, "Evolution of fiber morphology during electrospinning" Journal of applied polymer scienc; 2010; 118: 2553-2561
65. Ki, C.S., D. H. Baek, K.D. Gang, K.H. Lee,; I.C. Um, and Y.H. Park, "Characterization of gelatin nanofiber prepared from gelatin–formic acid solution" Polymer; 2005; 46: 5094-5102
66. Wessel, C., R. Ostermann, R. Dersch, and B.M. Smarsly, "Formation of inorganic nanofibers from preformed TiO2 nanoparticles via electrospinning" The Journal of Physical Chemistry C; 2011; 115: 362-372
67. Bock, N., M.A. Woodruff, D.W. Hutmacher, and T.R .Dargaville, "Electrospraying, a reproducible method for production of polymeric microspheres for biomedical applications" Polymers; 2011; 3: 131-149
68. Yan, E.; J. Jiang, X. Yang, L. Fan, Y. Wang, Q. An, Z. Zhang, B. Lu, D. Wang, and D. Zhang , "pH-sensitive core-shell electrospun nanofibers based on polyvinyl alcohol/polycaprolactone as a potential drug delivery system for the chemotherapy against cervical cancer" Journal of Drug Delivery Science and Technology; 2020; 55: 1-15
69. Bölgen, N., Y. Z. Menceloğlu, K. Acatay,; İ. Vargel, and E. Pişkin, "In vitro and in vivo degradation of non-woven materials made of poly (ε-caprolactone) nanofibers prepared by electrospinning under different conditions" Journal of Biomaterials Science, Polymer Edition; 2005; 16: 1537-1555
70. Johnson, J., A. Niehaus, S. Nichols, D. Lee, J. Koepsel, D. Anderson, J. Lannutti, "Electrospun PCL in vitro: a microstructural basis for mechanical property changes" Journal of Biomaterials Science, Polymer Edition; 2009; 20: 467-481
71. Hoffman, A.S., "Hydrogels for biomedical applications" Advanced drug delivery reviews; 2012; 64: 18-23
72. Gasmi, H., F. Danede, J. Siepmann, and F. Siepmann, "Does PLGA microparticle swelling control drug release? New insight based on single particle swelling studies" Journal of Controlled Release; 2015; 213: 120-127
73. Gasmi, H., J.F. Willart, F. Danede, M. Hamoudi, J. Siepmann, and F. Siepmann, "Importance of PLGA microparticle swelling for the control of prilocaine release" Journal of Drug Delivery Science and Technology; 2015; 30: 123-132
74. Fiore, V.F., M.C. Lofton, S. RoserPage, S.C. Yang, J. Roman, N. Murthy, and T.H. Barker, "Polyketal microparticles for therapeutic delivery to the lung" Biomaterials; 2010; 31: 810-817

無法下載圖示 全文公開日期 2031/09/03 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE