簡易檢索 / 詳目顯示

研究生: 許智嘉
Zhi-Jia Xu
論文名稱: 氧化鋅-氧化銦鎵鋅/超奈米鑽石複合奈米結構 之感測特性分析
The studies for ZnO-Indium Gallium Zinc Oxide /Ultra-nanocrystalline Diamond hybrid Nanostructures for Sensing Properties
指導教授: 黃柏仁
Bohr-Ran Huang
口試委員: 周賢鎧
施文欽
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 167
中文關鍵詞: 氧化鋅奈米(柱/管)氧化銦鎵鋅超奈米鑽石氫氣感測器
外文關鍵詞: ZnO gas sensors, IGZO-UNCD hybrid, Ar/UNCD-ZnO and N-UNCD hydrogen sensor
相關次數: 點閱:301下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文分為二部分,第一部分探討不同成長時間的摻氮的超奈米鑽石(N-UNCD)和氧化鋅及氧化銦鎵鋅複合奈米柱/管之氫氣感測器,並進行物性及電性之分析;第二部分探討不同成長時間的摻氬的超奈米鑽石(Ar-UNCD)和氧化鋅及氧化銦鎵鋅複合奈米柱/管之氫氣感測器,並進行物性及電性之分析。
    研究發現,在N-UNCD (5 min)/Ar-UNCD(5 min),其在500ppm的氫氣流量下擁有最好的靈敏度為2.5%和3.6%;接著鍍上氧化鋅經由水熱法成長氧化鋅奈米柱的時候,造成響應值提升,其原因是整體的比表面積提升,導致更多的氧氣吸附;第二個原因是氧化鋅與N-UNCD/Ar-UNCD分別兩種材料接觸時,因為功函數的不同,導致氧化鋅的電子會從導帶轉移到N-UNCD/Ar-UNCD的導帶直到費米能階達導同個水平,在氧化鋅和N-UNCD/Ar-UNCD接面形成空乏層,使電阻增加,當在氫氣的環境下,自由電子濃度注入,空乏層寬度降低,使電阻下降,導致氫氣響應值的提升。N-UNCD/Ar-UNCD複合氧化鋅奈米柱在500ppm的氫氣流量下之靈敏度提升為24.08/26.76%。
    經由加入氧化銦鎵鋅可以提高較高的電子流動性以及表面積,並且從柱狀結構經由自我蝕刻形成管,把接觸面積提升更多,以更提升氫氣感測響應值,氧化鋅與氧化銦鎵鋅-N-UNCD/Ar-UNCD奈米結構在500ppm的氫氣流量下之靈敏度提升為58.18%/74.7%。
    最後在以不同波段的發光二極體(LED)去照射氧化鋅與氧化銦鎵鋅-Ar-UNCD複合結構進行氫氣感測之分析可以發現,因氧化鋅與氧化銦鎵鋅/Ar-UNCD奈米結構在紫外光波段具有吸收波長,當照射紫外光時進行氫氣感測可以發現因電子能階的跳耀,造成電阻上升,在500ppm的氫氣流量下靈敏度提升為82.5%。
    另外發現把材料應用在光感測上面也有非常好的響應值,氧化鋅本身對於紫外光有反應,氧化銦鎵鋅本身具有較高的電子遷移率,超奈米鑽石對紫外光有響應,綜合起來,氧化鋅與氧化銦鎵鋅-N-UNCD/Ar-UNCD奈米結構製作紫外光感測器,最佳的光暗響應值比為3747.09/19017.63。


    Hydrogen (H2) gas have been recognized as future substitute natural resource for fuel requirements and commercial applications. However, it is unsafe hence it must detect with proper H2 gas detector with advance nano materials based device. As well, UV photodetectors are very important device that detect the harmful UV lights and also utilized in health diagnostics, flame discovery and satellite applications. Zinc oxide (ZnO) based gas sensor and UV photodetectors are excellent, and also ZnO possesses advance performance with addition of suitable materials.
    In this work, we devote to fabricate several gas sensors and photodetectors with combination of ZnO and nitrogen incorporated ultranano crystalline diamond (N-UNCD) and argon incorporated ultranano crystalline diamond (Ar-UNCD) with addition of indium gallium zinc oxide (IGZO) interlayer. In the first section, we focus the fabrication of H2 gas sensors using ZnO nanorods/tubes (ZNRs/ZNTs) with combination of Ar-UNCD and N-UNCD, which possesses gas response of 24% and 27%, respectively. On the otherhand, the IGZO interlayer with ZNRs/Ar-UNCD and ZNRs/N-UNCD exhibits H2 sensing response of 44% and 64%. Remarkably, the IGZO interlayer with ZNTs/Ar-UNCD and ZNTs/N-UNCD reveals enhanced H2 sensing response of 58% and 75%. Interestingly, IGZO interlayered ZNTs/Ar-UNCD exhibits excellent gas sensing of 82.5% under UV light illuminations. The systematic analysis reveals excellent gas response achieved due to effectual material defects and various heterojunction interfaces.
    In the second section, we focus the fabrication of UV photodetector using ZnO with combination of Ar-UNCD and N-UNCD with interlayered IGZO. Initially, we optimize the growth and of ZNR-ZNTs on N-UNCD substrates with interlayered IGZO, which exhibits the photoresponse switch ratio of 1098, 2985 and 3747, respectively. On the other hand, ZNR-Ar-UNCD-IGZO and ZNT-Ar-UNCD-IGZO nanostructures exhibits the superior photoresponse ratio of 9757 and 19017. The enhanced photoresponse achieved due to the effective electron-hole recombination through fast adsorptivity and oxygen vacancies under a UV atmosphere. The obtained gas and UV sensing performance of ZNT-Ar-UNCD-IGZO is overwhelmingly better than that of the ZnO based on previous studies and promising for future Gas/UV applications.

    目 錄 中文摘要 Ⅰ 英文摘要 Ⅱ 致謝 III 目錄 IV 圖目錄 VIII 表目錄 XIV 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 第二章 文獻回顧 3 2.1 氧化銦鎵鋅材料特性簡介 3 2.2 奈米鑽石 6 2.2.1 奈米鑽石薄膜特性簡介 6 2.2.2 奈米鑽石成核機制 9 2.2.3 奈米鑽石薄膜之成長方法 10 2.3 氧化鋅材料特性簡介 15 2.3.1 氧化鋅基本性質與結構 15 2.3.2 氧化鋅一維結構成長機制簡介 16 a. 水熱法成長機制 17 b. VLS法成長機制 18 c. 電化學沉積法 19 d. 氧化鋅奈米管成長機制 21 2.4 氣體感測器介紹 21 2.4.1金屬氧化物半導體型感測器 22 2.4.2電化學固態電解質型 23 2.4.3觸媒燃燒型氣體感測器 23 2.5 紫外光感測器介紹 24 第三章 實驗方法 26 3.1 實驗設計與流程 26 3.2 製備藥品之材料介紹 28 3.3 水熱法(Hydrothermal method)成長氧化鋅奈米柱與奈米管 29 3.3.1 製備氧化鋅晶種層 29 3.3.2 成長氧化鋅奈米柱及奈米管 30 3.4 微波電漿化學氣相沉積法成長奈米結晶鑽石 31 3.4.1 以鑽石粉末及鈦金屬粉末震盪製備種子層 31 3.4.2 以微波電漿化學氣相沉積法成長奈米鑽石薄膜 32 3.5 濺鍍金屬修飾物 33 3.6 實驗分析儀器介紹 35 3.6.1 場發射掃描式電子顯微鏡 ( FE-SEM ) 35 3.6.2 能量分散光譜儀(Energy Dispersive Spectrometer,EDS) 36 3.6.3 X射線繞射儀 (X-ray diffraction,XRD) 36 3.6.4 拉曼光譜儀(Raman spectrum) 37 3.6.5 光激發螢光光譜儀(Photoluminescence,PL) 38 3.6.6 X射線光電子能譜儀 (X-Ray Photoelectron Spectroscopy,XPS) 39 3.6.7 氣體感測器(Gas sensor) 39 3.6.8 光感測器(Photodetector,PD) 40 3.6.9 場發射槍穿透式電子顯微鏡(300kV)(FEG-TEM ) 41 第四章 氧化鋅-氧化銦鎵鋅/摻氮的超奈米鑽石(ZnO-IGZO/N-UNCD)複合奈米結構之感測特性 42 4.1 以不同成長時間之N-UNCD之特性分析 42 4.1.1 N-UNCD表面型態分析 42 4.1.2 N-UNCD拉曼光譜分析 44 4.1.3 N-UNCD氫氣感測分析 45 4.2 氧化鋅/N-UNCD復合奈米柱之特性分析 49 4.2.1 ZNR/N-UNCD表面型態分析 49 4.2.2 ZNR/N-UNCD拉曼光譜分析 51 4.2.3 ZNR/N-UNCD光激發螢光頻譜儀分析 52 4.2.4 ZNR/N-UNCD氫氣感測分析 54 4.2.5 ZNR/N-UNCD光感測分析 59 4.3 氧化鋅-氧化銦鎵鋅/N-UNCD複合奈米柱之特性分析 61 4.3.1 ZNR-IGZO/N-UNCD表面型態分析 61 4.3.2 ZNR-IGZO/N-UNCD拉曼光譜分析 64 4.3.3 ZNR-IGZO/N-UNCD光激發螢光頻譜儀分析 65 4.3.4 ZNR-IGZO/N-UNCD氫氣感測分析 67 4.3.5 ZNR-IGZO/N-UNCD光感測分析 72 4.4 氧化鋅-氧化銦鎵鋅/N-UNCD複合奈米管之特性分析 74 4.4.1 ZNT-IGZO/N-UNCD表面型態分析 74 4.4.2 ZNT-IGZO/N-UNCD拉曼光譜分析 77 4.4.3 ZNT-IGZO/N-UNCD光激發螢光頻譜儀分析 78 4.4.4 ZNT-IGZO/N-UNCD氫氣感測分析 80 4.4.5 ZNT-IGZO/N-UNCD光感測分析 85 第五章 氧化鋅-氧化銦鎵鋅/摻氬超奈米鑽石(ZnO-IGZO/Ar-UNCD)複合奈米結構之感測特性 89 5.1 以不同成長時間之Ar-UNCD之特性分析 89 5.1.1 Ar-UNCD表面型態分析 89 5.1.2 Ar-UNCD拉曼光譜分析 91 5.1.3 Ar-UNCD氫氣感測分析 92 5.2 氧化鋅/Ar-UNCD複合奈米柱之特性分析 96 5.2.1 ZNR/Ar-UNCD表面型態分析 96 5.2.2 ZNR/Ar-UNCD拉曼光譜分析 98 5.2.3 ZNR/Ar-UNCD光激發螢光頻譜儀分析 99 5.2.4 ZNR/Ar-UNCD氫氣感測分析 101 5.2.5 ZNR/Ar-UNCD光感測分析 106 5.3 氧化鋅-氧化銦鎵鋅/Ar-UNCD複合奈米柱之特性分析 108 5.3.1 ZNR-IGZO/Ar-UNCD表面型態分析 108 5.3.2 ZNR-IGZO/Ar-UNCD拉曼光譜分析 111 5.3.3 ZNR-IGZO/Ar-UNCD光激發螢光頻譜儀分析 112 5.3.4 ZNR-IGZO/Ar-UNCD氫氣感測分析 114 5.3.5 ZNR-IGZO/Ar-UNCD光感測分析 119 5.4 氧化鋅-氧化銦鎵鋅/ Ar-UNCD複合奈米管之特性分析 121 5.4.1 ZNT-IGZO/Ar-UNCD表面型態分析 121 5.4.2 ZNT-IGZO/Ar-UNCD TEM分析 124 5.4.3 ZNT-IGZO/Ar-UNCD拉曼光譜分析 125 5.4.4 ZNT-IGZO/Ar-UNCD光激發螢光頻譜儀分析 126 5.4.5 ZNT-IGZO/Ar-UNCD氫氣感測分析 128 5.4.6 ZNT-IGZO/Ar-UNCD不同光源氫氣感測分析 133 5.4.7 ZNT-IGZO/Ar-UNCD光感測分析 134 第六章 結論與未來展望 138 6.1 結論 138 6.2 未來展望 142 參考文獻 144

    參考文獻
    [1] S. E. Hosseini, M. A. Wahid. Hydrogen Production from Renewable and Sustainable Energy Resources: Promising Green Energy Carrier for Clean Development. Renew. Sustain. Energy Rev. 57, 850-866 (2016).
    [2] A.S. Kornyushchenko, Ahalapitiya H. Jayatissa, V. V. Natalich, V.I. Perekrestov "Two step technology for porous ZnO nanosystem formation for potential use in hydrogen gas sensors", Thin Solid Films, Volume 604, 1 April 2016, Pages 48-54
    [3] Soong Keun Hyun , Gun-Joo Sun , Jae Kyung Lee , Chongmu Lee , Wan In Lee , Hyoun Woo Kim "Ethanol gas sensing using a networked PbO-decorated SnO2 nanowires", Thin Solid Films, Volume 637, 1 September 2017, Pages 21-26
    [4] Butler, J.E., et al., Understanding the chemical vapor deposition of diamond: recent progress. Journal of physics-Condensed Matter, 2009. 21 (36): p.-
    [5] SHARP, C. (2014). Sharp Electronics. Retrieved February 13, 2015, from IGZO: http://www.sharp-world.com/igzo/
    [6] K. Nomura, A. Takagi, T. Kamiya, H. Ohta, M. Hirano, and H.Hosono: Jpn. J. Appl. Phys. Vol. 45 (2006)4303~4308
    [7] H.Hosono:, K. Nomura, Y. Ogo, T. Uruga and T. Kamiya, J. Non-Cryst. Solid 354(2008), p. 2796
    [8] H. Q. Chiang, J. F. Wager, R. L. Hoffman, J. Jeong, and D. A. Keszler, Appl. Phys. Lett. 86(2005).
    [9] P.K. Bachmann and R. Messier,” Emerging technology of diamond thin films,”
    Chemical and Engineering News 67 (20) 1989,pp.24-39
    [10] 宋健民,鑽石合成,台北市;全華,2000,的547-553頁。
    [11] 林玉燕,竟種育芽技術為碳化鎢(WC-Co)基財成長鑽石膜性質的影響,碩士論文,國立台北科技大學機電整合研究所,台北,2001
    [12] T. Sharda and S. Bhattacharyya, ” Advances in nanocrystalline diamond, ” Encyclopedia of Nanocsience and Nanotechnology, X, 1, 2003.
    [13] J. W. Baldwin, M. Zalalutdinov, T. Feygelson, J. E. Butler and B. H. Houstona, ”
    Fabrication of short-wavelength Photonic crystals in wide-band-gap nanocrystalline diamod films , ” The Journal of Vacuum Science and Technology B, vol.24, no.1, 2006,pp.50-54
    [14] P. Achatz, J. A. Garrido, M. Stutzmann, O. A. Williams, D. M. Gruen, A.Kromka and D. Steinmuller , ” Optical properties of nanocrystalline diamond thin films, ”
    Applied Physics Letters, vol.88, 2006, no. 101908.
    [15] L.W. Jiang, L.J. Wang, J.M. Liu, J.F. Ruan, Q. F. Su, J. T. Cui, N.C. Wu, W. M. Shi and Y.B. Xia, ” Optical properties of nano-crystalline diamond films, ”Journal of Infrared and Millimeter Waves, vol.25,no.3,2006,pp.195-198.
    [16] Yao, Kaiyuan, et al. "Carbon SP 2-SP 3 technology: Graphene-on-diamond thin film UV detector." Micro Electro Mechanical Systems (MEMS), 2014 IEEE 27th International Conference on. IEEE, 2014.
    [17] Kobashi, Koji. Diamond films: chemical vapor deposition for oriented and heteroepitaxial growth. Elsevier, 2010.
    [18] Liu, Huimin, and David S. Dandy. Diamond chemical vapor deposition: nucleation and early growth stages. Elsevier, 1996.
    [19] Jiang, X., et al. "Diamond film orientation by ion bombardment during deposition." Applied physics letters 68.14 (1996): 1927-1929.
    [20] Iijima, Sumio, Yumi Aikawa, and Kazuhiro Baba. "Early formation of chemical vapor deposition diamond films." Applied physics letters 57.25 (1990): 2646-2648.
    [21] Dennig, Paul A., and David A. Stevenson. "Influence of substrate topography on the nucleation of diamond thin films." Applied physics letters 59.13 (1991): 1562-1564.
    [22] 董耀中,熱退火後處理對於奈米鑽石薄膜場發射特性之研究,雲林科技大學電子工程系實務專題報告,2007
    [23] Jong-Hee Park, T.S. sudarshan, Chemical vapor deposition, The materials information society (1989)
    [24] R.F. Davis Noyes, Diamond Films and Coatings, Moyes publications, p.69 (1993)
    [25] 曾永華、陳柏穎、鄭宇明和游銘永,"人造合成鑽石及應用",科學發展,2014。
    [26] Matsumoto, Seiichiro, et al. "Vapor deposition of diamond particles from methane." Japanese Journal of applied physics 21.4A (1982): L183.
    [27] Tiwari, Jitendra N., et al. "Direct synthesis of vertically interconnected 3-D graphitic nanosheets on hemispherical carbon particles by microwave plasma CVD." Plasmonics 6.1 (2011): 67-73.
    [28] Arora, Suneet, and V. D. Vankar. "Field emission characteristics of microcrystalline diamond films: Effect of surface coverage and thickness."Thin Solid Films 515.4 (2006): 1963-1969.
    [29] Matsumoto, Seiichiro, Mototsugu Hino, and Toyohiko Kobayashi. "Synthesis of diamond films in a RF induction thermal plasma." Applied physics letters 51.10 (1987): 737-739.
    [30] Zhang, Tao, et al. "The effect of deposition parameters on the morphology of micron diamond powders synthesized by HFCVD method." Journal of Crystal Growth 372 (2013): 49-56.
    [31] Meyer, Duane E., Rodney O. Dillon, and John A. Woollam. "Radio‐frequency plasma chemical vapor deposition growth of diamond." Journal of Vacuum Science & Technology A 7.3 (1989): 2325-2327.
    [32] S.J. Kim, B. K. Jul, Y.H. Lee, B.S. Park, IEEE, p.526 (1996)
    [33] 徐育婷, 研製氧化鋅材料之共振腔增強式金屬-半導體-金屬紫外光檢測器, 碩士論文, 國立成功大學微電子工程研究所 (2010).
    [34] Fan Gao et al, "Ultraviolet electroluminescence from Au-ZnO nanowire Schottky type light-emitting diodes", Appl. Phys. Lett. 108 (2016) 261103.
    [35] Jialun He , Xuanli Zheng , Xuda Hong , Weiping Wang , Yiyan Cao , Ting Chen , Lijing kong , Yaping Wu , Zhiming Wu a, Junyong Kang , "Enhanced field emission of ZnO nanowire arrays by the control of their structures", Materials Letters 216 (2018) 182–184.
    [36] Adhimoorthy Saravanan et al, “Fast Photoresponse and Long Lifetime UV Photodetectors andField Emitters Based on ZnO/Ultrananocrystalline Diamond Films”, Chem. Eur.J. 21 (2015) 16017-16026.
    [37] Cheng-Liang Hsu et al, “A dual-band photodetector based on ZnO nanowires decorated with Au nanoparticles synthesized on a glass substrate”, RSC Adv. 6 (2016) 74201-74208.
    [38] Xiaolan Deng, Lilan Zhang, Jing Guo, Qinjun Chen, Jianmin Ma,” ZnO enhanced NiO-based gas sensors towards ethanol”, Materials Research Bulletin 90 (2017) 170–174.
    [39] Jiangyang Liu, Tianshuang Wang, Boqun Wang, Peng Sun, Qiuyue Yang, Xishuang Liang, Hongwei Song, Geyu Lu,” Highly sensitive and low detection limit of ethanol gas sensor based on hollow ZnO/SnO2 spheres composite material”, Sensors and Actuators B 245 (2017) 551–559.
    [40] Zhi-Feng Shi et al,” Photoluminescence performance enhancement of ZnO/MgO heterostructured nanowires and their applications in ultraviolet laser diodes”, Phys. Chem. Chem. Phys. 17 (2015) 13813-13820.
    [41] Ü. Özgür et al, “A comprehensive review of ZnO materials and devices”, J. Appl. Phys. 98 (2005) 041301.
    [42] A. Ashrafi and C. Jagadish, “Review of zincblende ZnO: Stability of metastable ZnO phases”, J. Appl. Phys. 102 (2007) 071101.
    [43] Vladimir L. Solozhenko et al, “Kinetics of the wurtzite-to-rock-salt phase transformation in ZnO at high pressure”, J. Phys. Chem. A. 115 (2011) 4354-4358.
    [44] Hadis Morkoç andÜmit Özgür, “General properties of ZnO. Zinc Oxide Fundamentals”, Materials and Device Technology (2009) 1-76.
    [45] Y. F. Chan, X. F. Duan, S. K. Chan, I. K. Sou, X. X. Zhang, and N. Wang, “ZnSe nanowires epitaxially grown on GaP (111) substrates by molecular-beam epitaxy”, Applied Physics Letters, 83 (2003) 26652668.
    [46] L. Schubert, P. Werner, N. D. Zakharov, G. Gerth, F. M. Kolb, L. Long, and U. Gosele, “Silicon nanowhiskers grown on (111) Si substrates by molecular-beam epitaxy ”, Applied Physics Letters, 84 (2004) 49684970.
    [47] S Shaikh et al, Chemical bath deposited ZnO thin film based UV photoconductive detector, Journal of Alloys and Compounds 664 (2016) 242-249.
    [48] D. C. Look and D. C. Reynolds Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy.Appl. Phys. Lett. 81, 1830 (2002)
    [49] D. Polsongkram, P. Chamninok, S. Pukird, L. Chow, O. Lupan, G. Chai, H. Khallaf, S. Park, and A. Schulte, “Effect of synthesis conditions on the growth of ZnO nanorods via hydrothermal method”, Physical B, 403 (2008) 37133717.
    [50] S. Dalui, S. N. Das, R. K. Roy, R. N. Gayen, and A. K. Pal, “Aligned Zinc Oxide nanorods by hybrid wet chemical route and their field emission properties”, Thin Solid Films, 516 (2008) 82198226.
    [51] M. Eskandari, V. Ahmadi, and S. H. Ahmadi, “Low temperature synthesis of ZnO nanorods by using PVP and their characterization”, Physical B, 404 (2009) 19241928.
    [52] S. R. Hejazi, H. R. M. Hosseini, and M. S. Ghamsari, “The role of reactants and droplet interfaces on nucleation and growth of ZnO nanorods synthesized by vapor-liquid-solid (VLS) mechanism”, Journal of Alloys and Compounds, 455 (2008) 353357.
    [53] O. Gunawan and S. Guha, “Characteristics of vapor–liquid–solid grown silicon nanowire solar cells”, Solar Energy Materials and Solar Cells, 93 (2009) 13881393.
    [54] Vergés, M. Andrés, A. Mifsud, and C. J. Serna, “Formation of rod-like zinc oxide microcrystals in homogeneous solutions”, Journal of the Chemical Society, Faraday Transactions86.6 (1990) 959-963.
    [55] Vayssieres, Lionel, et al. “Purpose-built anisotropic metal oxide material: 3D highly oriented microrod array of ZnO”, The Journal of Physical Chemistry B105.17 (2001) 3350-3352.
    [56] Y.H. Yang et al, “ZnO nanowire and amorphous diamond nanocomposites and field emission enhancement”, Chem. Phys. Lett. 252 (2005) 248-251.
    [57] Mensah, Samuel L., et al. "Formation of single crystalline ZnO nanotubes without catalysts and templates", Applied physics letters 90.11 (2007): 113108.
    [58] R. S. Wagner and W. C. Ellis, “Vapor-Liquid-Solid mechanism of single crystal growth”, Applied Physics Letters, 4 (1964) 8991.
    [59] N. Wang, Y. Cai, and R.Q. Zhang, “Growth of nanowires”, Materials Science and Engineering R, 60 (2008) 151.
    [60] M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, “Room-temperature ultraviolet nanowire nanolasers”, Science, 292 (2001) 18971899.
    [61] Cembrero, J, et al. "Nanocolumnar ZnO films for photovoltaic application", Thin Solid Films 451 (2004): 198-202.
    [62] Polsongkram, D., et al., Effect of synthesis conditions on the growth of ZnO nanorods via hydrothermal method. Physica B: Condensed Matter, 2008. 403(19): p. 3713-3717.
    [63] Weintraub, B., et al., Solution synthesis of one-dimensional ZnO nanomaterials and their applications. Nanoscale, 2010. 2(9): p. 1573-1587.
    [64] Gonzalez-Valls, I., et al., Synthesis conditions, light intensity and temperature effect on the performance of ZnO nanorods-based dye sensitized solar cells. Journal of Power Sources,2011. 196(15): p. 6609-6621.
    [65] Chevalier-César, C., M. Capochichi-Gnambodoe, and Y. Leprince-Wang, Growth mechanism studies of ZnO nanowire arrays via hydrothermal method. Applied Physics A, 2014. 115(3): p.953-960.
    [66] Caglar, Y., K. Gorgun, and S. Aksoy, Effect of deposition parameters on the structural properties of ZnO nanopowders prepared by microwave-assisted hydrothermal synthesis. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2015. 138: p. 617-622.
    [67] Chen, Y.-C., et al., Investigation of the Optimal Parameters in Hydrothermal Method for the Synthesis of ZnO Nanorods. Journal of Nanomaterials, 2014. 2014.
    [68] Zhang, J., et al., Control of ZnO morphology via a simple solution route. Chemistry of Materials, 2002. 14(10): p. 4172-4177.
    [69] 陳一誠, “金屬氧化物半導體行氣體感測器”, 材料與社會, 68, pp. 62-66, 1992.
    [70] 周瑞福, “氣體感測器原理及應用”,三聯科技股份有限公司.
    [71] 黃炳照,”固態電解質電化學氣體感測器”, Chemistry (The Chinese Chem.Soc., Taipei), 59, pp. 207-217, 2001.
    [72] Deepa Kathiravan, Bohr-Ran Huang ,and Adhimoorthy Saravanan,”Self-Assembled Hierarchical Interfaces of ZnO Nanotubes/Graphene Heterostructures for Efficient Room Temperature Hydrogen Sensors”, ACS Appl. Mater. Interfaces 2017, 9, 12064−12072.
    [73] 國立台灣科技大學X光繞射儀實驗室
    [74] Sankaran, Kamatchi Jothiramalingam, et al. Enhancement of the electron field emission properties of ultrananocrystalline diamond films via hydrogen post-treatment. ACS applied materials & interfaces 6 16 (2014) 14543-14551.
    [75] T.C. Damen, S.P.S. Porto, B. Tell,Raman effect in zinc oxide,Physical Review, 142 (1966) 570-574.
    [76] Y. J. Xing, Z. H.Xi, Z.Q.Xue, X. D. Zhang, J.H.Song, R. M. Wang, J. Xu, Y. Song, S. L. Zang, and D. P. Yu,Optical properties of the ZnO nanotubes.
    [77] Madhumita Sinha, Rajat Mahapatra, Biswanath Mondal, Takahiro Maruyama, and Ranajit Ghosh, ” Ultrafast and Reversible Gas-Sensing Properties of ZnO Nanowire Arrays Grown by Hydrothermal Technique”, J. Phys. Chem. C 2016, 120, 3019−3025
    [78] Vijendra Singh Bhati, Sapana Ranwa, Mattia Fanetti, Matjaz Valantc, Mahesh Kumar, “Efficient hydrogen sensor based on Ni-doped ZnO nanostructures byRF sputtering”, Sensors and Actuators B 255 (2018) 588–597.
    [79] Sunghoon Park, Suyoung Park, Sangmin Lee, Hyoun Woo Kim, Chongmu Lee, “Hydrogen sensing properties of multiple networked Nb2O5/ZnO core–shell nanorod sensors”, Sensors and Actuators B 202 (2014) 840–845.
    [80] K. Vijayalakshmi, K. Karthick, “Growth of highly c-axis oriented Mg:ZnO nanorods on Al2O3 substrate towards high-performance H2 sensing”, International journal of hydrogen energy 39 (2014) 7165-7172.
    [81] Deepa Kathiravan, Bohr-Ran Huang ,and Adhimoorthy Saravanan,”Self-Assembled Hierarchical Interfaces of ZnO Nanotubes/Graphene Heterostructures for Efficient Room Temperature Hydrogen Sensors”, ACS Appl. Mater. Interfaces 2017, 9, 12064−12072.
    [82] Vasile Postica, Oleg Lupan, Jorit Gröttrup, Rainer Adelung, “Individual Bi2O3-Functionalized ZnO Microwire for Hydrogen Gas Detection”, Advanced Nanotechnologies for Detection and Defence against CBRN Agents pp 445-450.
    [83] T. Kamal, “High performance NiO decorated graphene as a potential H2 gas sensor, “ J. Alloys Comp., 729 (2017), pp. 1058-1063
    [84] Adhimoorthy Saravanan, Bohr-Ran Huang and Deepa Kathiravan,” Hierarchical morphology and hydrogen sensing properties of N2-based nanodiamond materials produced through CH4/H2/Ar plasma treatment”, Applied Surface Science Volume 457, 1 November 2018, Pages 367-375
    [85] Bochang Li, Pui To Lai, Wing Man Tang,” Hydrogen Sensors Based on TFTs With Catalytic Source/Drain Electrodes: IGZO Versus Pentacene”, IEEE Electron Device Letters ( Volume: 39 , Issue: 10 , Oct. 2018 )
    [86] Tejendra Dixit, I.A. Palani, Vipul Singh, “Hot holes behind the improvement in ultraviolet photoresponse of Au coated ZnO nanorods, “Materials Letters, Volume 181, 15 October 2016, Pages 183-186
    [87] Sanjit Sarkar and Durga Basa, ACS Appl. Mater. Interfaces, 7, 16322−16329 (2015)
    [88] Jun-Cheng Lin, Bohr-Ran Huang, and Tzu-Ching Lin, “Bilayer Structure of ZnO Nanorod/Nanodiamond Film Based Ultraviolet Photodetectors, “Journal of The Electrochemical Society, 160 (8) H509-H512 (2013)
    [89] Adhimoorthy Saravanan, Bohr-Ran Huang, Jun-Cheng Lin, Gerd Keiser, and I-Nan Lin, “Fast Photoresponse and Long Lifetime UV Photodetectors and Field Emitters Based on ZnO/Ultrananocrystalline Diamond Films, “Chem. Eur. J. 2015, 21, 16017 – 16026.
    [90] P. Gao, Z. Wang, K. Liu, Z. Xu, W. Wang, X. Bai, E. Wang, “Photoconducting response on bending of individual ZnO nanowires, “J. Mater. Chem., 19 (2009), pp. 1002-1005.

    無法下載圖示 全文公開日期 2024/08/05 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE