簡易檢索 / 詳目顯示

研究生: Iryanti Fatyasari Nata
Iryanti - Fatyasari Nata
論文名稱: 水熱法應用於生質為基礎之多功能奈米複合材料製備及其應用
Hydro/solvothermal Preparation of Bio-based Multifunctional Nanocomposites and Their Applications
指導教授: 李振綱
Cheng-Kang Lee
口試委員: 朱義旭
Yi-Hsu Ju
劉志成
Jhy-Chern Liu
Suryadi Ismadji
Suryadi Ismadji
劉懷勝
Hwai-shen Liu
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 179
中文關鍵詞: 水熱碳化法固體酸觸媒細菌纖維素奈米複合材料吸附磁性碳質顆粒離子複合6xHis標定蛋白金屬交互親和力
外文關鍵詞: hydrothermal carbonization; solid acid catalyst, magnetic carbonaceous particle, ion complexed, 6xHis tagged protein, metal affinity interaction.
相關次數: 點閱:336下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

利用水浴/溶劑加熱法(hydro/solvothermal)不僅能產生成大小均一的奈米粒子,還可製作多功能的奈米複合材料。如葡萄糖溶液經水熱處理(180 ℃、4小時)可生產出次微米大小分佈均一的碳質球 (carbonaceous sphere CP),若水熱處理時加入丙烯酸,可縮小碳質球的大小,並增加60% 的羧基含量。經磺化處理後碳質球(C-SO3H)的酸含量將會自0.548 mmol/g 增加至2.00 mmol/g 。利用磺化後的碳質球做為觸媒可水解澱粉生產5.62 mg/mL 的葡萄糖,產率為28.1%;亦可水解玻尿酸(HA)產生玻尿酸低聚物0.56 μmol/mL 的N-Acetyl-D-Glucosamine,因此可將磺化後的碳質球( (C-SO3H)視為固體酸觸媒。
本論文也探討將細菌纖維素層(bacterial cellulose,BC)浸在葡萄糖溶液中,再利用水熱法處理(180 oC,3小時),可製備出碳質奈米複合薄層(Carbonaceous nanocomposite pellicle ),此複合物對Pb(II)和Fe(III)的吸附能力分別為224 mg Pb(II)及408.63 mg Fe(III)/g。利用同樣的方式亦可將富有胺基的奈米磁性顆粒(amine-rich functionalized magnetic nanoparticles,MH)包埋於細菌纖維素中成為磁性奈米複合薄層BC@MH,此種複合方式不僅能增加薄層之胺基的含量,也可增強其耐熱性以及機械性質。經測試約有10.5 mmol/g的胺基在BC@MH上,為磁性奈米顆粒(MH)的14.3倍。此未曾乾過的BC@MH對於砷有良好的吸附力(90 mg As/ g BC@MH)。
此外,本論文也使用水熱法將磁性奈米顆粒包覆碳質殼層,製備出M@C和MH@C,在外包覆的碳質殼層不僅能在腐蝕性環境下保護磁性奈米顆粒,也對Pb(II)有良好的吸附力(12 mmg/g)。若使用MH@C奈米顆粒吸附過Ni2+離子後,可再利用金屬交互親和作用來純化含有6xHis標籤的重組蛋白, 1克的MH@C-Ac-Ni可純化出9.4mg的重組綠螢光蛋白(GFP),或2.3 mg的玻尿酸酶。
利用水浴/溶劑加熱法所製備出之上述這些碳質顆粒、磁性顆粒以及其複合材料的高表面積、好的熱穩定性和化學穩定性,其將可廣汎應用在觸媒、藥物釋放和酵素固定化等領域上。


The hydro/solvothermal technique not only can generate monodispersed and highly homogeneous nanoparticles but also produce multifunctional nanocomposite materials. These are positive outcomes concerning the green chemistry aspects of this process.
The hydrothermal (180 oC, 4 h) carbon synthesis from glucose produces monodisperse carbonaceous sphere (CP). The total acidic content on CP was significantly increased from 0.548 mmol/g to 2.00 mmol/g after post-sulfonation (C-SO3H). The hydrolysis of starch over C-SO3H solid acid catalyst produced 5.62 mg/mL of glucose with 28.1% yield. The oligomer hyaluronic acid (HA) could also be obtained in HA hydrolysis by C-SO3H, approximately 0.56 mol/mL of N-Acetyl-D-Glucosamine was produced. Carbonaceous nanocomposite pellicle can also be prepared by one-step hydrothermal carbonization of bacterial cellulose (BC) pellicle soaked in glucose solution (180 oC, 3 h). The size of carbonaceous spheres decreased significantly but with about 60% of increase carboxyl groups on the surface when hydrothermal carbonization is in the presence of acrylic acid. The carbonaceous spheres in the never-dried pellicle remained its high adsorption capacity towards Pb(II) and Fe(III). Aproximately , 224 mg of Pb(II) and 408.63 mg of Fe(III) could be adsorbed per gram of carbonaceous pellicle, respectively. The rich amine surface functionalized magnetite/BC nanocomposite (BC@MH) carried out in one-pot solvothermal (198 ◦C, 6 h) reaction. The presence of amine surface-functionalized magnetite nanoparticles on the surface of cellulose nanofibrils not only significantly enhanced the thermal and mechanical properties but also the amine content of the nanostructured bacterial cellulose pellicle. Approximately 10.5 mmol/g of amine on BC@MH is about 14.3 fold higher than its counterpart (MH) prepared in the absence of BC pellicle. The never-dried BC@MH demonstrated high adsorption capacity towards As(V) about 90 mg of As(V) can be adsorbed per gram of BC@MH. Magnetic nanoparticles (M) was prepared by solvothermal synthesis. The size could be significantly reduced to approximately 30 nm when 1,6-hexanediamine was employed in the reaction solution. Both the plain and amine surface functionalized MNPs were effectively encapsulated in the carbonaceous shell by hydrothermal treatment in 0.5 M glucose solution (M@C and MH@C). The carbonaceous shell not only can protect the MNPs from the corrosive environment but also possesses a high adsorption capacity towards Pb(II) about 123 mg/g. The Ni2+ ion complexed on MH@C and MH@C-Ac could specifically isolate 6xHis tagged recombinant proteins from crude bacterial extracts via metal affinity interaction. Recombinant green fluorescence protein (GFP) and hyaluronic acid (HA) lyase of 9.4 mg and 2.3 mg could be isolated by 1 g of MH@C-Ac-Ni, respectively.
The high surface area, good chemical and thermal stability and those as-prepared carbonaceous particle and magnetite nanoparticle/nanocompiste will enable them for other potential applications such as in the fields of catalysis, drug delivery, and enzyme immobilization.

DOCTORAL DISSERTATION ADVISOR RECOMMENDATION …...… i QUALIFICATION FORM BY DOCTORAL DEGREE EXAMINATION COMMITTEE ………………………………………………………………... ii CHINESE ABSTRACT ……………….……………………………............. iii ABSTRACT …………………………………………………………............. v DEDICATION........................................................................................... vii ACKNOWLEDGEMENT........................................................................... viii TABLE OF CONTENTS ……………………………………………………. ix LIST OF TABLES……………………………………………………………. xii LIST OF FIGURES ……………………………………………………......... xiii LIST OF SCHEME …………………………………………………….......... xvii CHAPTER 1 INTRODUCTION ………………………………………. 1 1.1 General Introduction...……………………………………………… 2 1.2 Objective of the Study ………..……………………………………. 3 1.3 Structure of Dissertation ………..………………………………….. 4 1.4 References ……………………………………………….…….…… 8 CHAPTER 2 LITERATURE REVIEW ……………………………… 10 2.1 Bacterial cellulose …………………………………………..…....... 11 2.2 Carbon Based Strong Solid Acid Catalyst ……………..………….. 12 2.3 Hydrothermal Technology …………………………………………. 15 2.4 Synthesis of Carbonaceous Particles by Hydrothermal Carbonization …………………………………………..……….….. 16 2.5 Synthesis of Magnetic Nanoparticle (MNPs) by Solvothermal Method ……………………………………………………………… 22 2.6 Carbon Coated Magnetic nanoparticle by Hydrothermal Method ……………………………………………….…………....... 25 2.7 References ……………………………………..……………………. 27 CHAPTER 3 STRONG SOLID ACID CATALYST PREPARE VIA HYDROTHERMAL CARBONIZATION AND IT’S PERFORMANCE FOR BIOPOLYMERS HYDROLYSIS…………………………………………... 34 3.1 Introduction ………………………………..………..……………… 35 3.2 Experimental section …………………...………….……..………… 35 3.2.1 Materials..……………………….………………………..…………. 35 3.2.2 Synthesis of Solid Acid Catalyst …………………………..………. 36 3.2.3 Cornstarch Hydrolysis ………………………….....……………….. 36 3.2.4 Bacterial Cellulose Production from Hydrolysate …………..……. 37 3.2.5 Hyaluronic Acid (HA) Hydrolysis ….……………………..………. 37 3.2.6 Characterization Methods ……………………………..…………… 37 3.2.7 Analysis………………………………..…………………………….. 38 3.3 Results and Discussion ……………..….…..………………............ 39 3.3.1 Solid Acid Preparation and Characterization ……………..………. 39 3.3.2 Starch Hydrolysis and Bacterial Cellulose Production …………… 45 3.3.3 Hyaluronic Acid Hydrolysis …………………………..…………… 50 3.4 Conclusion ………………………..………………………………… 53 3.5 References ………………………..………………………………… 53 CHAPTER 4 NOVEL CARBONACEOUS NANOCOMPOSITE PELLICLE BASED ON BACTERIAL CELLULOSE 57 4.1 Introduction ………………………….……………………………… 58 4.2 Experimental section …………………..…….……...……………… 60 4.2.1 Materials..……………………….……..……………………………. 60 4.2.2 Synthesis of carbonaceous spheres and nanocomposites……......... 60 4.2.3 Adsorption of Fe(III) and Pb(II) …………………………….......... 62 4.2.4 Characterization ………………………..……….………………….. 61 4.3 Results and Discussion ……………..….……….…….……............ 62 4.3.1 Carbonaceous Microsphere …. ………..…………………………... 62 4.3.2 Carbonaceous pellicle (BC@C) …. ………..……………………… 66 4.3.3 Adsorption of Fe(III) and Pb(II)…………………………..…..…… 71 4.4 Conclusion………………………….…………………..…………... 75 4.5 References ……………………….…………………………………. 76 CHAPTER 5 ONE-POT PREPARATION OF AMINE-RICH MAGNETITE/BACTERIAL CELLULOSE NANOCOMPOSITE AND ITS APPLICATION FOR ARSENATE REMOVAL 80 5.1 Introduction ……………………………………………..…………. 5.2 Experimental Section ………………….……………………..…… 81 5.2.1 Materials..……………………….……………..…………………... 83 5.2.2 Preparation Magnetic Nanoparticles Composite………….…..….. 83 5.2.3 Adsorption of As(V) …………………………..…………………... 84 5.2.4 Characterization …………………………..……………………….. 84 5.3 Results and Discussion...…….………..………….……………….. 86 5.3.1 Magnetic Bacterial Cellulose Preparation and Characterization… 86 5.3.2 Adsorption Kinetic of As(V)……...………………..…………….. 95 5.3.3 Effect of pH on As(V) Removal …………………………...……... 96 5.3.4 Adsorption Isotherms……………….………………...………..….. 97 5.4 Conclusion...…………………………………………………..….... 101 5.5 References …………………………………………………………. 101 CHAPTER 6 FACILE PREPARATION OF MAGNETIC CARBONACEOUS NANOPARTICLES FOR Pb(II) IONS REMOVAL……………………………………….. 105 6.1 Introduction ……………………………………………………........ 106 6.2 Experimental Section …………..…………………………………... 108 6.2.1 Materials..…………….….………………………………………..… 108 6.2.2 Synthesis of Magnetic Nanoparticle ………………………………. 108 6.2.3 Preparation of Magnetic Carbonaceous Nanoparticles ….…….…. 109 6.2.4 Analysis …………..……………………..………………………….. 109 6.2.5 Equilibrium Adsorption of Pb(II) ………….………………………. 110 6.2.6 Characterization ………………….…………………………………. 110 6.3 Results and Discussion ………..….……….………………….......... 111 6.3.1 Magnetic nanoparticles preparation and characterization…………. 111 6.3.2 Equilibrium adsorption of Pb(II)…..………….……………………. 119 6.4 Conclusion…………..………………………………………………. 122 6.5 References……………..…………………………………………….. 122 CHAPTER 7 CARBONACEOUS NANOPARTICLES FOR METAL AFFINITY ISOLATION OF RECOMBINANT PROTEIN…………………………... 127 7.1 Introduction …..…………………………………………………….. 128 7.2 Experimental Section ………....……………………………………. 130 7.2.1 Materials..……………..….………...……………………………….. 130 7.2.2 Synthesis of Magnetic Nanoparticles (MNPs)…….…..………....... 130 7.2.3 Passivation MNPs with Carbonaceous Materials ….……….……... 130 7.2.4 Characterization of MNPs ……..….……………………………….. 131 7.2.5 Production of 6xHis tagged GFP and HA lyase …….…………….. 132 7.2.6 Affinity isolation of GFP and HA lyase by MNPs with carbonaceous shell………...……………………………………....... 133 7.2.7 Analysis ……………………………………………………………... 133 7.3 Results and Discussion ……………..…….…………………........... 134 7.3.1 Magnetic Nanoparticles Preparation and Characterization…..….... 134 7.3.2 6xHis tagged Recombinant Proteins Isolation …..….…..………… 140 7.4 Conclusion.……………………..…………………………………… 146 7.5 References…………………………………………………….......... 147 CHAPTER 8 CONCLUSION AND FUTURE OUTLOOK ………… 153 8.1 Conclusion...………………………………………………………… 154 8.2 Future Outlook ……..……………………………………………..... 156 Bibliography ………………………………………………………... xviii

[1]C. Pan, B. Hu, W. Li, Y. Sun, H. Ye, X. Zeng, Novel and efficient method for immoblization and stabilization of β-D-galactosidase by covalent attachment onto magnetite Fe3O4-chitosan nanoparticles. Journal of molecular Catalysis B: Enzymatic 61 (2009) 208-215.
[2]A. Frenzel, C. Bergemann, G. Kohl, T. Reinard, Novel purification system for 6xHis-tagged proteins by magnetic affinity separation. Journal of Chromatography B 793 (2003) 325-329.
[3]S. Girault, G. Chassaing, J.C. Blais, A. Brunot, G. Bolbach, Coupling of MALDI-TOF mass analysis to the separation of biotinylated peptides by magnetic streptavidin beads. Analytical Chemistry 68 (1996) 2122-2126.
[4]Z. Ma, H. Liu, Synthesis and surface modification of magnetic particles for application in biotechnology and biomedicine. China Particuology 5 (2007) 1-10.
[5]K. Nishio, Y. Masaike, M. Ikeda, H. Narimatsu, N. Gokon, S. Tsubouchi, M. Hatakeyama, S. Sakamoto, N. Hanyu, A. Sandhu, H. Kawaguchi, M. Abe, H. Handa, Development of novel magnetic nano-carriers for high-performance affinity purification. Colloids and Surfaces B: Biointerfaces 64 (2008) 162-169.
[6]Z.G. Peng, K. Hidajat, M.S. Uddin, Adsorption of bovine serum albumin on nanosized magnetic particles. Journal of Colloid and Interface Science 271 (2004) 277-283.
[7]K. Obata, O. Segawa, M. Yakabe, Y. Ishida, T. Kuroita, K. Ikeda, B. Kawakami, Y. Kawamura, M. Yohda, T. Matsunaga, H. Tajima, Development of a novel method for operating magnetic particles, Magtration Technology, and its use for automating nucleic acid purification. Journal of Bioscience and Bioengineering 91 (2001) 500-503.
[8]X.-W. Wei, G.-X. Zhu, C.J. Xia, Y. Ye, A Solution fabrication of magnetite nanopaticles encapsuleted in carbon. Nanotechnology 17 (2006) 4307-4311.
[9]U.-y. Li, Y.-e. Jiang, K.-l. Huang, P. Ding, J. Chen, Preparation and properties of magnetetic Fe3O4-chitosan nanoparticles. Journal of Alloys and Componds 466 (2008) 451-456.
[10]P.I. Girginova, A.L. Daniel-da-Silva, C.B. Lopes, P. Figueira, M. Otero, V.S. Amaral, E. Pereira, T. Trindade, Silica coated magnetite particles for magnetic removal of Hg2+ from water. Journal of Colloid and Interface Science 345 (2010) 234-240.
[11]Y.-H. Deng, C.-C. Wang, J.-H. Hu, W.-L. Yang, S.-K. Fu, Investigation of formation of silica-coated magnetite nanoparticles via sol–gel approach. Colloids and Surfaces A: Physicochem. Eng. Aspects 262 (2005) 87–93.
[12]S. Ikeda, K. Tachi, Y.H. Ng, Y. Ikoma, T. Sakata, H. Muri, T. Harada, M. Matsumura, Selective adsorption of glucose-derived carbon precursor on amino-functionalized porous silica for fabrication of hollow carbon sphere with porous walls. Chem. Mater 19 (2007) 4335-4340.
[13]Z. Zhang, H. Duan, S. Li, Y. Lin, Assembly of magnetic nanospheres into one-dimensional nanostructured carbon hybrid materials. Langmuir 26 (2009) 6676-6680.
[14]I.F. Nata, G.W. Salim, C.-K. Lee, Facile preparation of magnetic carbonaceous nanoparticles for Pb2+ ions removal. Journal of Hazardous Materials 183 (2010) 853-858.
[15]A. Heeboll-Nielsen, W.S. Choe, A.P.J. Middelberg, O.R.T. Thomas, Efficient inclusion body processing using chemical extraction and high gradient magnetic fishing. Biotechnology Progress 19 (2003) 887-898.
[16]S.M. O'Brien, R.P. Sloane, O.R.T. Thomas, P. Dunnill, Characterisation of non-porous magnetic chelator supports and their use to recover polyhistidine-tailed T4 lysozyme from a crude E. coli extract. Journal of Biotechnology 54 (1997) 53-67.
[17]S.M. O'Brien, O.R.T. Thomas, P. Dunnill, Non-porous magnetic chelator supports for protein recovery by immobilised metal affinity adsorption. Journal of Biotechnology 50 (1996) 13-25.
[18]A.d. Campo, T. Sen, J.-P. Lellouche, I.J. Bruce, Multifunctional magnetite and silica-magnetite nanoparticles: Synthesis, surface activation and applications in life sciences. Journal of Magnetism and Magnetic Materials 293 (2005) 33-40.
[19]A. Heeboll-Nielsen, S.F.L. Justesen, O.R.T. Thomas, Fractionation of whey proteins with high-capacity superparamagnetic ion-exchangers. Journal of Biotechnology 113 (2004) 247-262.
[20]I.F. Nata, C.K. Lee, Novel carbonaceous nanocomposite pellicle based on bacterial cellulose. Green Chemistry 12 (2010) 1454-1459.
[21]R. Demir-Cakan, N. Baccile, M. Antonietti, M.M. Titirici, Carboxlate-rich carbonaceos materials via one-step hydrothermal carbonization of glucose in the presence of acrylic acid. Chem. Mater 21 (2009) 484–490.
[22]J.X. Yi, G. Weinberg, X. Liu, O. Timpe, R. Schlogl, D.S. Su, Nanoarchitecturing of activated carbon: facile strategy for chemical functionalization of the surface of activated carbon. Advanced Functional Materials 18 (2008) 3613-3619.
[23]R. Zhuang, Y. Zhang, R. Zhang, C. Song, K. Yang, A. Yang, B. Jin, Purification of GFP fusion proteins with high purity and yield by monoclonal antibody-coupled affinity column chromatography. Protein Expression and Purification 59 (2008) 138-143.
[24]C.L. Chiang, C.Y. Chen, L.W. Chang, Purification of recombinant enhanced green fluorescent protein expressed in Escherichia coli with new immobilized metal ion affinity magnetic adsorbents. J. Chromatogr. B 864 (2008) 116-122.
[25]T. Penna, M. Ishii, A. Junior, L. Nascimento, L. de Souza, O. Cholewa, Evaluation of recombinant green fluorescent protein, under various culture conditions and purification with HiTrap hydrophobic interaction chromatography resins. Applied Biochemistry and Biotechnology 114 (2004) 453-468.
[26]N.S. El-Safory, C.-K. Lee, Cytotoxic and antioxidant effects of unsaturated hyaluronic acid oligomers. Carbohydrate Polymers 82 (2010) 1116-1123.
[27]P.-F. Yang, C.-K. Lee, Direct purification and immobilization of recombinant hyaluronan lyase from unclarified feedstock using immobilized metal affinity magnetite for oligo-hyaluronan preparation. Biochemical Engineering Journal 37 (2007) 108-115.
[28]R. Stern, M.J. Jedrzejas, Hyaluronidases: their genomics, structures, and mechanisms of action. Chem. Rev. 106 (2006) 818-839.
[29]A. Tawada, T. Masa, Y. Oonuki, A. Watanabe, Y. Matsuzaki, A. Asari, Large-scale preparation, purification, and characterization of hyaluronan oligosaccharides from 4-mers to 52-mers. Glycobiology 12 (2002) 421-426.
[30]J.R. Baker, S. Dong, D.G. Pritchard, The hyaluronan lyase of Streptococcus pyogenes bacteriophage H4489A. Biochem J. 365 (2002) 317-322.
[31]E. Ingham, K.T. Holland, G. Gowland, W.J. Cunliffe, Purification and partial characterization of hyaluronate lyase (EC 4.2.2.1) from Propionibacterium acnes. J Gen Microbiol 115 (1979) 411-418.
[32]K.Y. Suh, J.M. Yang, A. Khademhosseini, D. Berry, T.-N.T. Tran, H. Park, R. Langer, Characterization of chemisorbed hyaluronic acid directly immobilized on solid substrates. J Biomed Mater Res Pt B Appl Biomater 72B (2004) 292-298.
[33]H. Rosen, A modified ninhydrin colorimetric analysis for amino acids. Archives of Biochemistry and Biophysics 67 (1957) 10-15.
[34]M.M. Bradford, A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72 (1976) 248-254.
[35]B.D. Hames, One-dimensional polyacrylamide gel electrophoresis, in: B.D. Hames, D. Rickwood (Eds.), Gel Electrophoresis of Proteins: A Practical Approach. IRL Press, Oxford, England (1986) 1-147.
[36]J.L. Reissig, J.L. Strominger, L.F. LEL, A modified colorimetric method for the estimation of N-acetylamino sugars. Journal of Biological Chemistry 217 (1955) 959-966.
[37]M. Sevilla, A.B. Fuertes, Chemical and structural properties of carbonaceous products obtained by hydrothermal carbonization of saccharides. Chem. Eur. J. 15 (2009) 4195-4203.
[38]G. Brunner, Near critical and supercritical water. Part I. Hydrolytic and hydrothermal processes. J. of Supercritical Fluids 47 (2009) 373–381.
[39]K. Sue, M. Uchida, T. Usami, T. Adschiri, K. Arai, Apparatus for direct pH measurement of supercritical aqueous solutions. J. of Supercritical Fluids 28 (2004) 287-296.
[40]P. Kritzer, Corrosion in high-temperature and supercritical water and aqueous solutions: a review. J. of Supercritical Fluids 29 (2004) 1-29.
[41]L. Zhao, Z. Bacsik, N. Hedin, W. Wei, Y. Sun, M. Antonietti, M.-M. Titirici, Carbon dioxide capture on amine-rich carbonaceous materials derived from glucose. ChemSusChem 3 (2010) 840 - 845.
[42]G. Furth, R. Knierim, V. Buss, C. Mayer, Binding of bivalent cations by hyaluronate in aqueous solution. International Journal of Biological Macromolecules 42 (2008) 33-40.

QR CODE