簡易檢索 / 詳目顯示

研究生: 陳松郁
Song-Yu Chen
論文名稱: 以RF磁控濺鍍技術製備稀土氧化鈰功能性薄膜於車用玻璃之研究
Functional Coating of Rare-Earth Cerium Oxide on Automobile Glass Substrates Deposited by RF Magnetron Sputtering
指導教授: 郭俞麟
Yu-Lin Kuo
口試委員: 李文仁
Wen-Jen Lee
施文欽
Wen-Ching Shih
黃柏仁
Bohr-Ran Huang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 99
中文關鍵詞: RF 磁控濺鍍稀土金屬疏水性氧化鈰
外文關鍵詞: RF magnetron sputter, Rare earth oxides, Hydrophobicity, Ceria
相關次數: 點閱:546下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報


第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 2 第二章 文獻回顧 3 2.1 玻璃 3 2.1.1 隔音端-隔音玻璃 3 2.1.2 節能端-Low-E低輻射節能玻璃 4 2.1.3 安全端-防彈夾層玻璃 5 2.1.4 裝飾端-藍鏡 6 2.2 氧化鈰 7 2.2.1 性質與結構 7 2.2.2 光學性質 8 2.2.3 化學性質 8 2.2.4 電子組態與軌域 9 2.3 親疏水性質之介紹 16 2.3.1 疏水之由來 16 2.3.2 親疏水性質 18 2.4 表面自由能 (Surface Free Energy) 20 2.5 疏水表面的應用 23 2.5.1 疏水機制-有機物質 24 2.5.2 疏水機制-電子軌域 25 2.6 製備疏水表面之方法 26 2.6.1 模板法 26 2.6.2 溶膠-凝膠法 (Sol-Gel) 28 2.6.3 蝕刻 (Etching) 29 2.6.4 逐層法 (Layer-By-Layer) 31 2.6.5 常壓電漿 (Atmospheric Pressure Plasma Jet) 31 2.7 鍍膜系統濺鍍原理 33 2.7.1 磁控濺鍍系統 33 2.7.2 薄膜生長機制 34 2.7.3 薄膜生長模型 36 2.7.4 Thornton’s Structure Zone Model 37 第三章 實驗材料與方法 39 3.1 研究設計 39 3.2 實驗耗材 40 3.3 實驗儀器與參數 41 3.3.1 真空磁控濺鍍 41 3.3.2 場發射掃描式電子顯微鏡 (Fields Emission Scanning Electron Microscopy, FE-SEM) 42 3.3.3 X-射線繞射儀 (X-Ray Diffraction, XRD) 43 3.3.4 水滴接觸角量測儀 (Water Contact Angle, WCA)[63-66] 44 3.3.5 反射率、穿透率量測 45 3.3.6 奈米壓痕機 (Nanoindenter) 46 第四章 氧化鈰物理性質與特性 49 4.1 前言 49 4.2 薄膜晶體分析 50 4.3 表面形貌與橫截面觀察 51 4.5 水滴接觸角分析 55 4.6 溫度測試 59 4.7 油滴接觸角測試 66 4.8 磨耗測試 68 4.9 能帶分析 70 4.10 穿透率測試 74 4.11 疏水薄膜應用案例 76 第五章 結論 79 未來展望 80

1.雨天開車時,車窗玻璃和後照鏡看不清怎麼辦?, https://kknews.cc/car/on9jvyo.html(2018)。
2.G. Azimi, R. Dhiman, H.-M. Kwon, A.T. Paxson, and K.K. Varanasi, “Hydrophobicity of rare-earth oxide ceramics”, Nature Materials, Vol. 12, pp. 315-320 (2013).
3.台灣福斯汽車,https://www.volkswagen.com.tw/zh/models/golf1.html
4.元璋玻璃股份有限公司, http://www.stanleyglass.com.tw/product_detail/standard_inquiry_C/index.php?Product_SN=189129&PHPSESSID=lcn48uqja979s43f9udcc1epo3&Company_SN=500173&Product_Site_Classify_SN=42110
5.DU PONT-The miracles of science, http://www2.dupont.com/China_Country_Site/zh_CN/industries/Industry%20Board/construction33.html
6.蔣昀錚、鄭棋宇、黃耀生、陳景豪,「EN-22 汽車防眩光反射鏡研製」,建國科技大學機構典藏,pp. 1-4 (2012)。
7.承益真空科技有限公司,http://www.cvt.tw/
8.Y.-M. So and W.-H. Leung, “Recent advances in the coordination chemistry of cerium (IV) complexes”, Coordination Chemistry Reviews, Vol. 340, pp. 172-197 (2017).
9.陳人傑,「具室溫鐵磁性釤摻雜二氧化鈰奈米顆粒之電子特性與局部結構研究」,碩士論文,國立台灣科技大學,pp. 1-92 (2012)。
10.S. Phoka, P. Laokul, E. Swatsitang, V. Promarak, S. Seraphin, and S. Maensiri, “Synthesis, structural and optical properties of CeO2 nanoparticles synthesized by a simple polyvinyl pyrrolidone (PVP) solution route”, Materials Chemistry and Physics, Vol. 115, pp. 423-428 (2009).
11.N. Kirk and J. Wood, “The effect of the calcination process on the crystallite shape of sol-gel cerium oxide used for glass polishing”, Journal of Materials Science, Vol. 30, pp. 2171-2175 (1995).
12.A. Younis, D. Chu, and S. Li, "Cerium oxide nanostructures and their applications, in Functionalized Nanomaterials." IntechOpen. pp. 53-68. (2016)
13.S. Tsunekawa, T. Fukuda, and A. Kasuya, “Blue shift in ultraviolet absorption spectra of monodisperse CeO2−x nanoparticles”, Journal of Applied Physics, Vol. 87, pp. 1318-1321 (2000).
14.張宏毅,「二氧化鈰奈米粉體之晶形操控-製備 ,特性分析及氧化催化活性」, 碩士論文,國立成功大學,pp. 1-208 (2005)。
15.C. Padeste, N.W. Cant, and D.L. Trimm, “The influence of water on the reduction and reoxidation of ceria”, Catalysis Letters, Vol. 18, pp. 305-316 (1993).
16.P. Patsalas, S. Logothetidis, L. Sygellou, and S. Kennou, “Structure-dependent electronic properties of nanocrystalline cerium oxide films”, Physical Review B, Vol. 68, pp. 035104 (1)-035104 (13) (2003).
17.X. Song, G. Qiu, and P. Qu, “Advances in research on applications and synthesis methods of CeO2 nanoparticles”, Metal Materials and Engineering, Vol. 33, pp. 29-34 (2004).
18.X. Chen, G. Li, Y. Su, X. Qiu, L. Li, and Z. Zou, “Synthesis and room-temperature ferromagnetism of CeO2 nanocrystals with nonmagnetic Ca2+ doping”, Nanotechnology, Vol. 20, pp. 115606 (2009).
19.J. Campserveux and P. Gerdanian, “Etude thermodynamique de l'oxyde CeO2− x pour 1.5 < OCe < 2”, Journal of solid state chemistry, Vol. 23, pp. 73-92 (1978).
20.黃秉炘、呂卦南,「簡明化學」,新文京 (2017)。
21.R. Fürstner, W. Barthlott, C. Neinhuis, and P. Walzel, “Wetting and self-cleaning properties of artificial superhydrophobic surfaces”, Langmuir, Vol. 21, pp. 956-961 (2005).
22.L. He, F. Lin, X. Li, H. Sui, and Z. Xu, “Interfacial sciences in unconventional petroleum production: from fundamentals to applications”, Chemical Society Reviews, Vol. 44, pp. 5446-5494 (2015).
23.W. Barthlott and C. Neinhuis, “Purity of the sacred lotus, or escape from contamination in biological surfaces”, Planta, Vol. 202, pp. 1-8 (1997).
24.N.J. Shirtcliffe, G. McHale, and M. I. Newton, “The superhydrophobicity of polymer surfaces: recent developments”, Journal of Polymer Science Part B: Polymer Physics, Vol. 49, pp. 1203-1217 (2011).
25.W.A. Zisman, “Relation of the equilibrium contact angle to liquid and solid constitution”, Advances in Chemistry, Vol. 43, pp. 1-51 (1964).
26.R.N. Wenzel, “Resistance of solid surfaces to wetting by water”, Industrial & Engineering Chemistry, Vol. 28, pp. 988-994 (1936).
27.A. Cassie and S. Baxter, “Wettability of porous surfaces”, Transactions of The Faraday Society, Vol. 40, pp. 546-551 (1944).
28.D.Y. Kwok, and A.W. Neumann, “Contact angle measurement and contact angle interpretation”, Advances in Colloid and Interface Science, Vol. 81, pp. 167-249 (1999).
29.Z. Peršin, K. Stana-Kleinschek, M. Sfiligoj-Smole, T. Kre, and V. Ribitsch, “Determining the surface free energy of cellulose materials with the powder contact angle method”, Textile Research Journal, Vol. 74, pp. 55-62 (2004).
30.S. Siboni, C. Della Volpe, D. Maniglio, and M. Brugnara, “The solid surface free energy calculation: II. The limits of the Zisman and of the equation-of-state approaches”, Journal of Colloid and Interface Science, Vol. 271, pp. 454-472 (2004).
31.欣創達科技有限公司,http://www.sindatek.com/.
32.T. Wagner, C. Neinhuis, and W. Barthlott, “Wettability and contaminability of insect wings as a function of their surface sculptures”, Acta Zoologica, Vol. 77, pp. 213-225 (1996).
33.L. Feng, S. Li, Y. Li, H. Li, L. Zhang, J. Zhai, Y. Song, B. Liu, L. Jiang, and D. Zhu, “Super‐hydrophobic surfaces: from natural to artificial”, Advanced Materials, Vol. 14, pp. 1857-1860 (2002).
34.X. Gao and L. Jiang, “Biophysics: water-repellent legs of water striders”, Nature, Vol. 432, pp. 36 (2004).
35.W. Lee, M.-K. Jin, W.-C. Yoo, and J.-K. Lee, “Nanostructuring of a polymeric substrate with well-defined nanometer-scale topography and tailored surface wettability”, Langmuir, Vol. 20, pp. 7665-7669 (2004).
36.M. Ma and R.M. Hill, “Superhydrophobic surfaces”, Current Opinion in Colloid & Interface Science, Vol. 11, pp. 193-202 (2006).
37.W. Barthlott and C.J.P. Neinhuis, “Purity of the sacred lotus, or escape from contamination in biological surfaces”,Planta, Vol. 202, pp. 1-8 (1997).
38.M. Khorasani and H. Mirzadeh, “In vitro blood compatibility of modified PDMS surfaces as superhydrophobic and superhydrophilic materials”, Journal of Applied Polymer Science, Vol. 91, pp. 2042-2047 (2004).
39.國家環境毒物研究中心-全氟烷化合物, http://nehrc.nhri.org.tw/toxic/toxfaq_detail_mobile.php?id=74.
40.M. Houde, A.O. De Silva, D.C. Muir, and R.J. Letcher, “Monitoring of perfluorinated compounds in aquatic biota: an updated review: PFCs in aquatic biota”, Environmental Science & Technology, Vol. 45, pp. 7962-7973 (2011).
41.X. Sheng and J. Zhang, “Superhydrophobic behaviors of polymeric surfaces with aligned nanofibers”, Langmuir, Vol. 25, pp. 6916-6922 (2009).
42.A. Greiner and J.H. Wendorff, “Electrospinning: a fascinating method for the preparation of ultrathin fibers”, Angewandte Chemie International Edition, Vol. 46, pp. 5670-5703 (2007).
43.Z. Cheng, J. Gao, and L. Jiang, “Tip geometry controls adhesive states of superhydrophobic surfaces”, Langmuir, Vol. 26, pp. 8233-8238 (2010).
44.W. Ma, H. Wu, Y. Higaki, H. Otsuka, and A. Takahara, “A “non-sticky” superhydrophobic surface prepared by self-assembly of fluoroalkyl phosphonic acid on a hierarchically micro/nanostructured alumina gel film”, Chemical Communications, Vol. 48, pp. 6824-6826 (2012).
45.M.S. Kavale, D. Mahadik, V. Parale, P. Wagh, S.C. Gupta, A.V. Rao, and H.C. Barshilia, “Optically transparent, superhydrophobic methyltrimethoxysilane based silica coatings without silylating reagent”, Applied Surface Science, Vol. 258, pp. 158-162 (2011).
46.L. Xu and J. He, “Fabrication of highly transparent superhydrophobic coatings from hollow silica nanoparticles”, Langmuir, Vol. 28, pp. 7512-7518 (2012).
47.S.A. Mahadik, M.S. Kavale, S. Mukherjee, and A.V. Rao, “Transparent superhydrophobic silica coatings on glass by sol–gel method”, Applied Surface Science, Vol. 257, pp. 333-339 (2010).
48.K. Tsougeni, N. Vourdas, A. Tserepi, E. Gogolides, and C. Cardinaud, “Mechanisms of oxygen plasma nanotexturing of organic polymer surfaces: from stable super hydrophilic to super hydrophobic surfaces”, Langmuir, Vol. 25, pp. 11748-11759 (2009).
49.E. Wohlfart, J.P. Fernández‐Blázquez, E. Arzt, and A. del Campo, “Nanofibrillar patterns on PET: the influence of plasma parameters in surface morphology”, Plasma Processes and Polymers, Vol. 8, pp. 876-884 (2011).
50.W. Sun, L. Shen, J. Wang, K. Fu, and J. Ji, “Netlike knitting of polyelectrolyte multilayers on honeycomb-patterned substrate”, Langmuir, Vol. 26, pp. 14236-14240 (2010).
51.Y.H. Kim, Y.M. Lee, J.Y. Lee, M.J. Ko, and P.J. Yoo, “Hierarchical nanoflake surface driven by spontaneous wrinkling of polyelectrolyte/metal complexed films”, ACS Nano, Vol. 6, pp. 1082-1093 (2012).
52.H.S. Uhm, J.P. Lim, and S.Z. Li, “Sterilization of bacterial endospores by an atmospheric-pressure argon plasma jet”, Applied Physics Letters, Vol. 90, pp. 261-501 (2007).
53.K.H. Becker, U. Kogelschatz, K. Schoenbach, and R. Barker, “Non-equilibrium air plasmas at atmospheric pressure. ” CRC press, (2014).
54.C.-L. Ko, Y.-L. Kuo, W.-J. Lee, H.-J. Sheng, and J.-Y. Guo, “The enhanced abrasion resistance of an anti-fingerprint coating on chrome-plated brass substrate by integrating sputtering and atmospheric pressure plasma jet technologies”, Applied Surface Science, Vol. 448, pp. 88-94 (2018).
55.C.-L. Ko, Y.-L. Kuo, J.-Y. Guo, J.-L. Wang, and S.-Y. Chen, “Functional FAS-13/SiOx composite coatings for improved anticorrosion and hydrophobicity/oleophobicity on AZ91D magnesium alloys”, Japanese Journal of Applied Physics, Vol. 58, pp. SAAD03 (1) - SAAD03 (6) (2018).
56.蕭宇呈,「以常壓電漿製備二氧化鈰疏水複合薄膜與其抗腐蝕性應用」,碩士論文,國立台灣科技大學,pp. 1-123 (2019)。
57.R.A. Wolf, “Atmospheric pressure plasma for surface modification.” , John Wiley & Sons, (2012).
58.P.J. Kelly and R.D. Arnell, “Magnetron sputtering: a review of recent developments and applications”, Vacuum, Vol. 56, pp. 159-172 (2000).
59.W.D. Sproul, R. Chistyakov, and B. Abraham, “Important developments in high power pulsed magnetron sputtering”, Society of Vacuum Coaters News Bulletin, pp. 35-37 (2006).
60.I. Petrov, P. Barna, L. Hultman, and J. Greene, “Microstructural evolution during film growth”, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, Vol. 21, pp. S117-S128 (2003).
61.J. Venables and G. Spiller, “Nucleation and growth of thin films”, Surface Mobilities on Solid Materials, pp. 341-404 (1983).
62.C. Charpentier, P. Prod’Homme, I. Maurin, M. Chaigneau, and P.R. i Cabarrocas, “X-Ray diffraction and Raman spectroscopy for a better understanding of ZnO: Al growth process”, EPJ Photovoltaics, Vol. 2, pp. 25002 (1) - 25002 (8) (2011).
63.李忠員,「以溶膠凝膠法製備 TEOS/FAS 疏水/疏油性薄膜於材料上之研究與應用」,碩士論文,國立台灣科技大學,pp. 1-88 (2015)。
64.陳冠霖,「載氣流量效應於常壓電漿噴射束沉積氧化矽薄膜特性與抗腐蝕能力之研究」,碩士論文,國立台灣科技大學,pp. 1-126 (2015)。
65.王彥捷,「透過陽極氧化技術改善濺鍍鋁膜 AZ91D 鎂合金之抗腐蝕性質」,碩士論文,國立台灣科技大學,pp. 1-122 (2016)。
66.郭兆渝,「利用大氣式常壓電漿噴射束改質矽晶片表面以應用於單晶矽太陽能電池之織構化研究」碩士論文,國立台灣科技大學,pp. 1-113 (2017)。
67.吳幸璇、蔡志申,光纖(Fiber),科技部高瞻自然科學教育平台; http://highscope.ch.ntu.edu.tw/wordpress/?p=76715.(2011)。
68.I.N. Sneddon, “The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile”, International Journal of Engineering Science, Vol. 3, pp. 47-57 (1965).
69.W.C. Oliver and G.M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments”, Journal of Materials Research, Vol. 7, pp. 1564-1583 (1992).
70.D. Tabor, “Indentation hardness: fifty years on a personal view”, Philosophical Magazine A, Vol. 74, pp. 1207-1212 (1996).
71.X. Li, D. Diao, and B. Bhushan, “Fracture mechanisms of thin amorphous carbon films in nanoindentation”, Acta Materialia, Vol. 45, pp. 4453-4461 (1997).
72.B. Bhushan, “Handbook of micro/nano tribology. ” , CRC press, (1998).
73.X. Li and B. Bhushan, “Measurement of fracture toughness of ultra-thin amorphous carbon films”, Thin Solid Films, Vol. 315, pp. 214-221 (1998).
74.W.D. Nix and H. Gao, “Indentation size effects in crystalline materials: a law for strain gradient plasticity”, Journal of the Mechanics and Physics of Solids, Vol. 46, pp. 411-425 (1998).
75.X. Li and B. Bhushan, “Evaluation of fracture toughness of ultra-thin amorphous carbon coatings deposited by different deposition techniques”, Thin Solid Films, Vol. 355, pp. 330-336 (1999).
76.D. Tabor, “The hardness of metals. ” , Oxford university press, (2000).
77.G. Odegard, T. Gates, and H. Herring, “Characterization of viscoelastic properties of polymeric materials through nanoindentation”, Experimental Mechanics, Vol. 45, pp. 130-136 (2005).
78.R.K. Jain, G. Kaur, S. Chauhan, Y.K. Gautam, and R. Chandra, “Study on structural, optical and wettable properties of CeO2 thin films deposited by reactive DC magnetron sputtering”, AIP Conference Proceedings, Vol. 1576, pp. 155-158 (2014).
79.P. Singh, K. Srivatsa, and S. Das, “Effect of substrate temperature on nanocrystalline CeO2 thin films deposited on Si substrate by RF magnetron sputtering”, Advances in Chemistry, Vol. 6, pp. 371-6 (2015).
80.M. Farahmandjou, M. Zarinkamar, and T. Firoozabadi, “Synthesis of Cerium Oxide (CeO2) nanoparticles using simple CO-precipitation method”, Revista Mexicana De Física, Vol. 62, pp. 496-499 (2016).
81.M. Ricken, J. Nölting, and I. Riess, “Specific heat and phase diagram of nonstoichiometric ceria (CeO2−x)”, Journal of Solid State Chemistry, Vol. 54, pp. 89-99 (1984).

無法下載圖示 全文公開日期 2024/07/31 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE