簡易檢索 / 詳目顯示

研究生: 李書廷
Shu-Ting Li
論文名稱: 雙架飛行器的多自由度合作運輸:基於視覺和閉迴路系統
Multi-DoF cooperative transportation with two drones: based on vision and closed-loop system
指導教授: 項天瑞
Tien-Ruey Hsiang
口試委員: 鮑興國
Hsing-Kuo Pao
鄧惟中
Wei-Chung Teng
學位類別: 碩士
Master
系所名稱: 電資學院 - 資訊工程系
Department of Computer Science and Information Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 43
中文關鍵詞: 無人飛行器空中運輸電腦視覺閉迴路系統
外文關鍵詞: Unmanned aerial vehicles, Air transportation, Computer vision, Closed loop systems
相關次數: 點閱:493下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現今運輸物體是自動化機器人主要的應用,自動化工廠已經廣泛使用地面機器人作為運輸平台。相較於地面機器人容易受到地形限制,空中機器人可以在任意的地形上移動,但飛行器的負載重量遠低於地面機器人。在許多研究中,對於重量較重的物體,已經使用多架飛行器運合作輸物。然而,在特定的環境中,空中的區域並不一定是寬敞的,對於一些複雜的環境,在使用多架飛行器合作運輸時,需要透過變換姿態才能在環境中移動。
    在本論文中,我們提出一個使用雙架飛行器的合作運輸系統,在運輸過程中可以任意變換負載的姿態。在系統中,每架飛行器都配置一個閉迴路系統,在飛行器之間無溝通的情況下,搭配行進策略完成任務。飛行器的閉迴路系統使用俯視負載的攝影機影像,檢測負載上的標記,並估算出負載的位置與姿態,透過固定增益的水平移動、垂直移動和旋轉的PID控制器給予飛行器移動的命令。
    我們在模擬器中實現了我們提出的系統,並設計一個需要改變負載姿態才能通過的實驗環境,透過不同條件的實驗,以及在實驗環境中加入風的影響,驗證了系統的穩定性。


    Nowadays, object transport is the main application of automated robots, and ground robots are widely used in automated factories as a transport platform. In comparison with ground robots, which are subject to terrain constraints, aerial robots can move on any terrain, although with a much smaller load capacity than that of ground robots. In many studies, multiple drones have been used to cooperatively transport heavier objects. Nevertheless, in a specific environment, the space over the terrain is not necessarily spacious. For some complex environments, when multiple drones are used for cooperative transportation, it is necessary to change the attitude of the drones to make them pass through the specific environment.
    In this study, a cooperative transport system using two drones is proposed, which could arbitrarily change the load attitude during the transportation process, where each drone, equipped with a closed-loop system, completed its task in conjunction with the routing strategy in case of no communication between the drones. The closed-loop system of the drone used a camera overlooking the load to detect the markings on the load to assess the position and attitude of the load, where the Proportional-Integral-Derivative controllers gave the drones the command to move horizontally, vertically, and rotarily through a fixed gain.
    In the simulator, we implemented the proposed system and developed an experimental environment requiring a change in the load attitude for the drones to pass through. The stability of the system was verified by various experiments, with the addition of wind effect.

    緒論 文獻探討 2.1 纜繩懸吊負載的狀態估計 2.2 穩定懸吊負載的狀態 2.3 多架飛行器合作運輸的策略 3 合作運輸系統 3.1 雙架運輸系統架構 3.1.1 標記 3.1.2 纜繩的限制 3.1.3 飛行器控制系統 3.2 無溝通雙架飛行器懸吊負載的運輸方式 3.2.1 負載狀態估計 3.2.2 PID控制器 3.2.3 合作策略 4 模擬數據分析 4.1 實驗環境與設定 4.2 調整負載重量之影響 4.3 調整纜繩長度之影響 4.4 環境風之影響 5 結論與未來展望 參考文獻

    [1] M. Bernard, K. Kondak, I. Maza, and A. Ollero, “Autonomous transportation and deployment with aerial robots for search and rescue missions,” Journal of Field Robotics, vol. 28, no. 6, pp. 914–931, 2011.
    [2] Q. Lindsey, D. Mellinger, and V. Kumar, “Construction with quadrotor teams,” Au­ tonomous Robots, vol. 33, no. 3, pp. 323–336, 2012.
    [3] P.E.Pounds,D.R.Bersak,andA.M.Dollar,“Stabilityofsmall­scaleuavhelicopters and quadrotors with added payload mass under pid control,” Autonomous Robots, vol. 33, no. 1­2, pp. 129–142, 2012.
    [4] D. Mellinger, M. Shomin, N. Michael, and V. Kumar, “Cooperative grasping and transport using multiple quadrotors,” in Distributed autonomous robotic systems, pp. 545–558, Springer, 2013.
    [5] H. Lee, H. Kim, and H. J. Kim, “Planning and control for collision­free cooperative aerial transportation,” IEEE Transactions on Automation Science and Engineering, vol. 15, no. 1, pp. 189–201, 2018.
    [6] Y. Ohnishi, T. Takaki, T. Aoyama, and I. Ishii, “Development of a 4­joint 3­dof robotic arm with anti­reaction force mechanism for a multicopter,” in 2017 IEEE/ RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 985– 991, IEEE, 2017.
    [7] B. Gabrich, D. Saldana, V. Kumar, and M. Yim, “A flying gripper based on cuboid modular robots,” in 2018 IEEE International Conference on Robotics and Automa­ tion (ICRA), pp. 7024–7030, IEEE, 2018.
    [8] S. J. Lee and H. J. Kim, “Autonomous swing­angle estimation for stable slung­load flight of multi­rotor uavs,” in 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 4576–4581, IEEE, 2017.
    30
    [9] M.Bisgaard,A.laCour­Harbo,andJ.D.Bendtsen,“Adaptivecontrolsystemforau­ tonomous helicopter slung load operations,” Control Engineering Practice, vol. 18, no. 7, pp. 800–811, 2010.
    [10] S. Tang, V. Wüest, and V. Kumar, “Aggressive flight with suspended payloads us­ ing vision­based control,” IEEE Robotics and Automation Letters, vol. 3, no. 2, pp. 1152–1159, 2018.
    [11] M.Jabeur,A.McFadyen,K.Morton,andF.Gonzalez,“Visualservoingofaquadro­ tor with suspended slung load for object detection and tracking,” in 2017 IEEE Aerospace Conference, pp. 1–13, IEEE, 2017.
    [12] I.Maza,K.Kondak,M.Bernard,andA.Ollero,“Multi­uavcooperationandcontrol for load transportation and deployment,” in Selected papers from the 2nd Interna­ tional Symposium on UAVs, Reno, Nevada, USA June 8–10, 2009, pp. 417–449, Springer, 2009.
    [13] N. Michael, J. Fink, and V. Kumar, “Cooperative manipulation and transportation with aerial robots,” Autonomous Robots, vol. 30, no. 1, pp. 73–86, 2011.
    [14] T. Lee, “Geometric control of multiple quadrotor uavs transporting a cable­ suspended rigid body,” in 53rd IEEE Conference on Decision and Control, pp. 6155– 6160, IEEE, 2014.
    [15] M.Mittal,J.Prasad,andD.P.Schrage,“Nonlinearadaptivecontrolofatwinlifthe­ licopter system,” in 1990 American Control Conference, pp. 743–748, IEEE, 1990.
    [16] H.K.ReynoldsandA.A.Rodriguez,“H/supinfinity/controlofatwinlifthelicopter system,” in [1992] Proceedings of the 31st IEEE Conference on Decision and Con­ trol, pp. 2442–2447, IEEE, 1992.
    [17] S. Kim, S. Choi, H. Lee, and H. J. Kim, “Vision­based collaborative lifting using quadrotor uavs,” in 2014 14th International Conference on Control, Automation and Systems (ICCAS 2014), pp. 1169–1174, IEEE, 2014.
    [18] P. O. Pereira and D. V. Dimarogonas, “Collaborative transportation of a bar by two aerial vehicles with attitude inner loop and experimental validation,” in 2017 IEEE
    31

    56th Annual Conference on Decision and Control (CDC), pp. 1815–1820, IEEE, 2017.
    [19] P. O. Pereira, P. Roque, and D. V. Dimarogonas, “Asymmetric collaborative bar sta­ bilization tethered to two heterogeneous aerial vehicles,” in 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 1–7, IEEE, 2018.
    [20] A. Tagliabue, M. Kamel, S. Verling, R. Siegwart, and J. Nieto, “Collaborative trans­ portation using mavs via passive force control,” in 2017 IEEE International Confer­ ence on Robotics and Automation (ICRA), pp. 5766–5773, IEEE, 2017.
    [21] M. Gassner, T. Cieslewski, and D. Scaramuzza, “Dynamic collaboration without communication: Vision­based cable­suspended load transport with two quadro­ tors,” in 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 5196–5202, IEEE, 2017.
    [22] K. Sreenath, T. Lee, and V. Kumar, “Geometric control and differential flatness of a quadrotor uav with a cable­suspended load,” in 52nd IEEE Conference on Decision and Control, pp. 2269–2274, IEEE, 2013.
    [23] S.Dai,T.Lee,andD.S.Bernstein,“Adaptivecontrolofaquadrotoruavtransporting a cable­suspended load with unknown mass,” in 53rd IEEE Conference on Decision and Control, pp. 6149–6154, IEEE, 2014.
    [24] H. Kato, “Artoolkit.” http://www.hitl.washington.edu/artoolkit/.
    [25] “Gazebo.”http://gazebosim.org/.

    無法下載圖示 全文公開日期 2025/01/22 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE