簡易檢索 / 詳目顯示

研究生: 蔡玉雯
Yu-wen Tsai
論文名稱: 油墨網印法製備硒化銅錫鋅太陽能電池及其分析
Preparation and analysis of screen printing CZTSe solar cells
指導教授: 郭東昊
Dong-hau Kuo
口試委員: 陳詩芸
Shih-yun Chen
薛人愷
Ren-kae Shiue
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 110
中文關鍵詞: 太陽能電池
外文關鍵詞: solar cell
相關次數: 點閱:237下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

近年來,能源出現危機,大家紛紛投入太陽能電池的研究與發展。目前化合物太陽能電池以硒化銅銦鎵為主,但由於成本高昂,故無法普及化,因此需要新的材料來控制成本,而發展出硒化銅錫鋅與硫化銅錫鋅兩種化合物太陽能電池,因錫、鋅的含量豐富且其硒化物能隙為0.9~1.07 eV、硫化物為1.5 eV,適合拿來做替換材料。
本實驗利用油墨網印法製備硒化銅錫鋅太陽能電池,並探討三種不同組成A(CZTSe+10wt% Se)、組成B(CZTSe+10wt%S)與組成C((CZTSe+10 wt%Al)+10 wt%S)所配製的油墨在不同液相燒結溫度(550℃、550℃與600℃)及冷壓與否對硒化銅錫鋅吸收層與太陽能元件之特性的影響,研究中透過FE-SEM、XRD及EDS分析吸收層物理性質,將其各參數製備成元件(Ag/ITO(RF)/i-ZnO(RF)/CdS(CBD)/吸收層(screen printing) /Mo(DC)/Al2O3),利用擬太陽能光測試儀器測試其電池之轉換效率。
實驗結果顯示,油墨網印後且經冷壓之兩階段燒結的方式(第一階段200℃,第二階段500℃~600℃)所製備之吸收層比未經冷壓之吸收層有較佳的緻密性且經由EDS成分分析可以發現沒有因油墨中之有機溶劑所造成的殘碳現象。組成A或組成B吸收層於500℃或600℃液相燒結溫度持溫30分鐘後,與有冷壓的組成C於550℃液相燒結溫度持溫30分鐘後,所得之XRD圖皆有明顯的二次相存在;經過冷壓的組成B於550℃液相燒結所得吸收層比組成A與組成C於550℃液相燒結所得吸收層緻密。且此所得有冷壓之組成B(CZTSe+10wt%S)吸收層,經XRD與EDS分析可證實S元素成功摻雜入晶格結構中,再由SEM分析圖中亦發現緻密性較佳及晶粒較大之現象。將不同的組成參數製備元件進行光電轉換效率量測,雖組成A與組成B為吸收層的太陽能電池皆呈現二極體現象,但效轉換效率不佳。綜合以上結果顯示出組成B經550℃液相燒結可獲得本實驗最佳之吸收層。未來希望能夠增加吸收層的緻密度、減少吸收層膜的厚度與改善p-n接合界面來使光電轉換效率提高。


Due to energy crisis, the research of solar cells is recently much more attractive. The main compound solar cell is the Cu(In,Ga)Se2 system, but the high cost has limited its further applications. Lowing the cost with the finding of new materials is necessary, therefore Cu2ZnSnS4(CZTS) and Cu2ZnSnSe4 (CZTSe) solar cells with energy band gaps of 1.5 eV and 0.9-1.07eV, respectively, are developed.
In this study, CZTSe solar cells were prepared by using ink-printing on alumina substrates. Three kinds of absorber layers with the composition A (CZTSe+10wt% Se),B (CZTSe+10wt%S) and C ((CZTSe+10wt%Al)+10wt%S) were prepared by ink printing. The lique-phase sintering temperatures was conducted at 500 oC,550 oC and 600oC. Some of the specimens were underwent the constrained sintering. The CZTSe solar cell was constituted with the stacking form of Ag/ITO/ZnO/CdS/screen-printing CZTSe/Mo/Al2O3. The quality of the absorption layer was analyzed by XRD and FE-SEM microscope equipped with energy dispersive X-ray spectrometer. The performance of the solar cells was evaluated under the standard AM1.5 illumination.
The experimental results showed that the best condition for the ink-printing CZTSe absorber layers through cold pressure and two-step process sintering pressure are more dense than those without pressuring. Composition-A and composition-B absorbing layers sintered at 500oC or 600oC and Composition-C layer sintered at 550oC contained second phased after they were identified by XRD analyses. After liquid-phase sintering at 550oC, the pre-pressing Composion-B layers had shown the CZTSe single phase and were dense in microstructure. The absorbing layer with composition B (CTTSe+10wt%S) was also found that the sulfur content in the sintering aid was incorporated into the CTZSe lattice, after it was confirmed by the XRD diffraction analysis and EDS spectrum. The suflur incorporation has assisted in densification and grain growth. The solar cell devices made from the 550C-sintered absorbing layers with composition A and composition B did show the I-V characteristics of a diode, although their electro-optic efficiency was not obtained.

摘要 Ⅰ Abstract Ⅲ 圖表目錄 Ⅴ 第一章 序論…………………………………………………………………… 1 1-1 前言 1 1-2 太陽能電池基本構造定義 2 1-3 太陽能電池發展 3 1-4 薄膜太陽能電池的種類 4 1-4-1 矽薄膜太陽能電池(Thin film silicon solar cells) 4 1-4-2 非晶系矽太陽能電池 (Amorphous silicon solar cell) 4 1-4-3 碲化鎘薄膜太陽能電池 (Cadmium Telluride Thin Film Photovoltaics,CdTe) 5 1-4-4 硒化銅銦鎵太陽能電池 (Copper Indium Gallium Diselenide solar cells, CIGSe) 5 1-5 研究動機與目的 6 第二章 太陽能電池理論基礎與文獻回顧 8 2-1 理論基礎 8 2-1-1 太陽能電池工作原理 8 2-1-2薄膜沉積理論基礎 12 2-2 化合物太陽能電池基本構造與各層介紹 12 2-2-1 基板選擇 13 2-2-2 鉬金屬背部電極 (Mo back contact) 13 2-2-4 緩衝層 (Buffer layer) 31 2-2-5 窗口層 (Window layer) 32 2-2-6 透明導電層 ( Transparent conducting oxide,TCO ) 32 2-2-7 上層電極 32 第三章 實驗步驟…………………………………. 33 3-1 實驗設備說明 33 3-1-1 DC直流濺鍍系統 33 3-1-2 RF射頻濺鍍系統 34 3-1-3網版印刷機 35 3-1-4高溫真空管型爐 35 3-1-5 化學浴相關儀器製備 36 3-2 實驗藥品與氣體選擇 40 3-2-1 藥品 40 3-2-2 氣體 42 3-3實驗流程 42 3-3-1 基板清洗 42 3-3-2 吸收層單相粉末製備 43 3-3-3 吸收層漿料製備 45 3-3-4 緩衝層 45 3-3-5 窗口層 46 3-3-6 透明導電層 46 3-3-7電極層 46 3-4實驗參數 51 3-5 分析儀器 55 3-5-1 場發射掃描式電子顯微鏡 (Field Emission-Scanning Electron Microscope,FE-SEM) 55 3-5-2 X光繞射分析儀 (X-ray Diffractometer,XRD) 55 3-5-3霍爾量測 (Hall Effect Measurement System) 56 3-5-4 擬太陽能光測試儀 (Standard AM1.5 illumination meter) 56 第四章 結果與討論…………………………… 57 4-1 CZTSe 吸收層之FE-SEM 表面形貌觀察 57 4-2 XRD結構性質分析 67 4-2-1 原始粉末XRD結構性質分析 67 4-2-2 吸收層之XRD結構性質分析 73 4-3 EDS成分分析 79 4-4吸收層之電性量測(Hall measurement) 86 4-5電池的製備與分析 87 4-6擬太陽能光測試 88 第五章 結論………………………………………. 91 第六章 參考文獻………………………………….. 93

[1] Adams, W.G. and R.E., Day. Proc. R. Soc., A25(1877) 113..

[2] Richard H. Bube, Photolatic Materials. Pp8-11.

[3] 柯志昇,綠色能源當道-全球太陽能電池市場與產業發展趨勢分析

[4] Ingrid Repins, Miguel A. Contreras1, Brian Egaas1, Clay DeHart, John Scharf1, Craig L. Perkins,Bobby Toand Rommel Noufi. “19.9%-efficient ZnO/CdS/CuInGaSe2 Solar Cell with 81.2% Fill factor” Prog. Photovolt: Res. Appl. 16 (2008) 235–239

[5] G. Zoppi, I. Forbes, R.W Miles, P.J. Dale, J.J. Scragg and L. M.
Peter“Cu¬2ZnSnSe4 Thin Film Solar Cells Produced by Selenisation of
Magnetron Sputtered Precursors”Prog.Photovolt:Res.17(2009)315-319

[6] H. Katagiri, K. Jimbo, S. Yamada, T. Kamimura, W.S. Maw, T. Fukano, T. Ito, T. Motohiro, “Enhanced conversion efficiencies of Cu2ZnSnS4 -based thin film solar cells by using preferential etching technique” , Applied Physics Express 1 (2008) 041201-1–141201-2.

[7] U. Rau, H.W. Schock “Electronic properties of Cu(In,Ga)Se2 hetero
junction solar cells-recent achievements, current understanding and
future challenges” Applied Physics A 69 (1999) 131-147.

[8] Yang, L. C., Chen, G. S., Rockett, A., “Surface polarities of sputtered
epitaxial CuInSe2 and Cu1In3Se5 thin films grown on GaAs(001)
substrates,” Applied Physics Letters, 86(2005)201907

[9] Hall, A. J., Hebert, D., Lei, C., “Epitaxial growth of very large grain
bicrystalline Cu(In,Ga)Se2 thin films by a hybrid sputtering method,”
Journal of Applied Physics, 103 (2008) 083540

[10] Eberhardt, J., Schulz, K., Metzner, H., “Epitaxial and polycrystalline
CuInS2 thin films: A comparison of opto-electronic properties,” Thin
Solid Films, 515 (2007) 6147-6150

[11]Hahn, T., Metzner, H., Reislohner, U., “ Morphology and structure of thin epitaxial Cu(In,Ga)S2 films on Si substrates, ” Thin Solid Films, 515 (2005) 332-335

[12] Sekiguchi, K., Tanaka, K., Moriya, K., “Epitaxial growth of
Cu2ZnSnS4 thin films by pulsed laser deposition, ” Physica Status Solidi C, 3(2006) 2618-2621

[13] J. Krustok, R. Josepson, T. Raadik, M. Danilson“Potential fluctuations
in Cu2ZnSnSe4 solar cells studied by temperature dependence of
quantum efficiency curves” Physica B.405(2010)3186-3189

[14] Satoshi Nakamura, Tsuyoshi Maeda, and Takahiro Wada “Electronic structure of stannite-type Cu2ZnSnSe4 by first principles calculations” Physica Status Solidi C ,6 (2009) 1261-1265

[15] SeJin Ahn, Sunghun Jung, Jihye Gwak, Ara Cho, Keeshik Shin,
Kyunghoon Yoon,Doyoung Park, Hyeonsik Cheong,2and Jae Ho Yun
“Determination of band gap energy „Eg… of Cu2ZnSnSe4 thin films:
On the discrepancies of reported band gap values” Applied Physics
Letters 97(2010) 021905

[16] Alexey Shavel, Jordi Arbiol, and Andreu Cabot“Synthesis of
Quaternary Chalcogenide Nanocrystals: Stannite Cu2ZnxSnySe1+x+2y”
JACS .132(2010)4514-4515.

[17] Hao Wei, Wei Guo , Yijing Sun, Zhi Yang , Yafei Zhang“Hot-injection
synthesis and characterization of quaternary Cu2ZnSnSe4 nanocrystals”
Materials Letters ,64 (2010) 1423-1426

[18] Rachmat Adhi Wibowo, Woo Seok Kim, Eun Soo Lee, Badrul Munir, Kyoo Ho Kim “Single step preparation of quaternary Cu2ZnSnSe¬¬4 thin films by RF magnetron sputtering from binary chalcogenide targets” Journal of Physics and Chemistry of Solids ,68 (2007) 1908-1913

[19]Hironori Katagiri, Kazuo Jimbo, Win Shwe Maw, Koichiro Oishi,Makoto Yamazaki, Hideaki Araki, Akiko Takeuchi, “Development of CZTS-based thin film solar cells,” Thin Solid Films, 517 (2009) 2455-2460

[20] K. Ito, T. Nakazawa, Jpn. Journal of Applied Physics. 27 (1988) 2094-2097

[21] Kunihiko Tanaka,Masatoshi Oonuki, Noriko Moritake, Hisao Uchiki.“Cu¬2ZnSnS4 thin film solar cells prepared by non-vacuum processing” Solar Energy Materials & Solar Cells. 93 (2009) 583-587

[22] Qijie Guo, Hugh W. Hillhouse, and Rakesh Agrawal.“Synthesis of Cu2ZnSnS4 Nanocrystal Ink and Its Use for solar Cells” JACS ,131 (2009)11672-11673

[23] Y.B. Kishore Kumar, G. Suresh Babu, P. Uday Bhaskar, V. Sundara Raja “Preparation and characterization of spray-deposited Cu2ZnSnS4 thin films” Solar Energy Materials & Solar Cells ,93(2009)1230-1237

[24] Teodor K. Todorov, Kathleen B. Reuter, and David B. Mitzi “High-Efficiency Solar Cell with Earth-Abundant Liquid-Processed Absorber” Advanced Materials. 22(2010)E156-159

[25]黃瑋迪,“濺鍍法製備硒化銅錫薄膜與其特性分析,”國立台灣科技大學 材料科技研究所,碩士學位論文(2008)

[26]吳先本,“濺鍍法製備硒化銅錫鋅太陽能電池及其分析”國立台灣科技大學 材料科技研究所,碩士學位論文(2009)

無法下載圖示 全文公開日期 2016/07/22 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE