簡易檢索 / 詳目顯示

研究生: 孫瑞廷
Jui-Ting Sun
論文名稱: 奈米銀/Halloysite奈米管/聚胺基甲酸酯奈米複合材料製備與性質之研究
The Study on the Synthesis and Properties of Nanosilver/Halloysite Nanotubes/Polyurethanes Nanocomposites
指導教授: 邱智瑋
Chih-Wei Chiu
口試委員: 游進陽
Chin-Yang Yu
邱顯堂
Hsien-Tang Chiu
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 101
中文關鍵詞: 聚胺基甲酸酯Halloysite奈米銀形狀記憶抗菌性
外文關鍵詞: Polyurethane, Halloysite, Nanosilver, Shape memory, Antibacterial
相關次數: 點閱:239下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

為了賦予聚胺基甲酸酯更多不同的功能及更加良好的物理性質,本研究利用高分子合成的概念將無機奈米材料 (halloysite nanotubes; HNTs以及奈米銀)添加至聚胺基甲酸酯 (Polyurethane; PU)中,並探討奈米無機材料對聚胺酯性質的影響。本研究分為兩部份。
第一部份為利用4,4’-diphenylmethane diisocyanate (MDI)、polytetramethylene glycol (PTMG)與含吡啶環之2,6-pyridinedimethanol (2,6-PDM)製備出形狀記憶聚胺基甲酸酯 (Shape memory polyurethane; SMPU),再將不同比例之HNTs混摻於PU內製備出形狀記憶型HNTs/PU奈米複合薄膜,隨後利用FTIR、TEM、XRD進行HNT於PU中分散性的探討,而HNTs/PU的熱穩定性與黏彈性使用TGA、DSC、DMA鑑定,再使用萬能拉伸機鑑定HNTs/PU的機械性質與形狀記憶性,最後利用AFM、WCA探討HNTs/PU薄膜表面粗糙度與親疏水能力,結果說明當Halloysite添加至PU內能夠提升PU的熱穩定性、機械性質與形狀記憶測試,結果揭示HNTs/PU-3形狀恢復能夠達到98%以上。
第二部份使用Halloysite、硝酸銀 (AgNO3)以及聚乙烯吡咯烷酮 (PVP)在Halloysite粉末上進行銀的包覆則形成Ag/HNTs。接著利用4,4’-diphenylmethane diisocyanate (MDI)、polytetramethylene glycol (PTMG)作為硬鏈段與軟鏈段、使用2,6-pyridinedimethanol (2,6-PDM)作為鏈延長劑製備出聚胺基甲酸酯 (PU),再將不同比例之鍍銀Halloysite nanotubes (Ag/HNTs)混摻於PU內製備出Ag/HNTs/PUs奈米複合薄膜。首先利用EDS、XRD、TEM對Ag/HNTs粉末進行銀於HNTs的附著情況之分析,隨後利用FTIR進行Ag/HNTs於PU中分散性的探討,Ag/HNTs/PU的熱穩定性與黏彈性使用TGA、DSC、DMA鑑定,再使用萬能強力試驗機鑑定Ag/HNTs/PU的機械性質,接著利用AFM、WCA探討Ag/HNTs/PU薄膜表面粗糙度與親疏水能力,最後進行對大腸桿菌的抗菌測試,結果說明當Ag/HNTs添加至聚胺酯內能夠提升PU的熱穩定性、機械性,在抗菌測試上說明Ag/HNTs粉末能夠提升聚胺酯的抗菌活性。


In order to give the polyurethane more different functions and better physical properties, this study used the concept of polymer synthesis to synthesize the nano inorganic materials (halloysite nanotubes; HNTs & nanosilver particles) into polyurethane (PU), and then discuss the effect of nano inorganic materials on the properties of polyurethane. This study is divided into two parts.
The first part is using 4,4'-diphenylmethane diisocyanate (MDI), polytetramethylene glycol (PTMG) and 2,6-pyridinedimethanol (2,6-PDM) containing pyridine ring to prepare shape memory polyurethane (SMPU), and then mix different proportions of HNTs into PU to prepare HNTs/PU nanocomposite film. Use FTIR, TEM, XRD to discuss the dispersion of HNT in PU, and the thermal stability and viscoelasticity of HNTs/PUs are evaluated by TGA, DSC, DMA, and then the universal tensile machine is used to identify the mechanical properties and shape memory of HNTs/PUs. Finally, AFM and WCA are used to discuss the surface roughness and hydrophobicity of HNTs/PUs films. The results show that when halloysite is added to the PU, it can improve the thermal stability, mechanical properties and the shape memory properties. The results reveal that the shape recovery of HNTs/PU-3 can reach more than 98%.
The second part uses halloysite, silver nitrate (AgNO3) and polyvinylpyrrolidone (PVP) to prepare doped-silver halloysite powder (Ag/HNTs). Then, using 4,4'-diphenylmethane diisocyanate (MDI) and polytetramethylene glycol (PTMG) as the hard segment and soft segment, using 2,6-pyridinedimethanol (2,6-PDM) as the chain extender to prepare polyurethane (PU), and then mix doped-silver halloysite nanotubes (Ag/HNTs) with different proportions into PU to prepare Ag/HNTs/PUs nanocomposite film. First, EDS, XRD, and TEM were using to analyze the adhesion of Ag/HNTs powder on the halloysite. Then, FTIR was used to discuss the dispersion of Ag/HNTs in PU. The thermal stability and viscoelasticity of Ag/HNTs/PU were using TGA, DSC, DMA to measure, and then use the universal strength test machine to measure the mechanical properties of Ag/HNTs/PU, then using AFM, WCA to explore the surface roughness and hydrophobicity of Ag/HNTs/PU film. Finally carry out the against E. coli’s antibacterial test. The test results show that when Ag/HNTs are added to the polyurethane, the thermal stability, mechanical properties and the antibacterial test shows that Ag/HNTs powder can enhance the antibacterial activity of polyurethane.

中文摘要. II Abstract. IV 誌謝 VI 目錄 VII 圖目錄 X 表目錄 XIII 第1章 緒論 1 1.1 前言 1 1.2 研究動機與目的 3 第2章 文獻回顧 4 2.1 聚胺基甲酸酯簡介 4 2.2 形狀記憶聚合物 6 2.3 Halloysite 7 2.4 奈米銀 8 第3章 實驗 10 3.1 實驗材料 10 3.2 儀器及操作方法 14 第4章Halloysite/聚胺基甲酸酯奈米複合材料之製備與性質探討 22 4.1 簡介 22 4.2 實驗步驟 24 4.3 實驗配方 25 4.4 實驗流程 26 4.5 結果與討論 27 4.6 結論 50 第5章奈米銀/Halloysite/聚胺基甲酸酯奈米複合材料之製備與性質探討 51 5.1 簡介 51 5.2 實驗步驟 52 5.3 實驗配方 54 5.4 實驗流程 55 5.5 結果與討論 56 5.6 結論 76 第六章總結……………………………………………………………..75 References 78

1. Kuan H.C., Ma C.C.M., Chang W.P., Yuen S.M., Wu H.H., Lee T.M., “Synthesis, thermal, mechanical and rheological properties of multiwall carbon nanotube/waterborne polyurethane nanocomposite,” Composites Science and Technology, Vol. 65, pp. 1703-1710 (2005).
2. Penczek P., Frisch K.C., Szczepaniak B., Rudnik E., “Synthesis and properties of liquid crystalline polyurethanes,” Journal of Polymer Science Part A: Polymer Chemistry, Vol. 31, pp. 1211-1220 (1993).
3. Luong N.D., Sinh L. H., Minna M., Jürgen W., Torsten W., T, Matthias S., Jukka S., “Synthesis and characterization of castor oil-segmented thermoplastic polyurethane with controlled mechanical properties,” European Polymer Journal, Vol. 81, pp. 129-137 (2016).
4. Zia K.M., Bhatti H.N., Bhatti I.A., “Methods for polyurethane and polyurethane composites, recycling and recovery: A review,” Reactive and Functional Polymers, Vol. 67, pp. 675-692 (2007).
5. Hepburn C., “Polyurethane Elastomers,” Elsevier Science, (1992).
6. Wirpsza Z., “Polyurethane, Chemistry, Technology and Applications,” Ellis Harwood, (1993).
7. Li J.W., Lee H.T., Tsai H.A., Suen M.C., Chiu C.W. “Synthesis and Properties of Novel Polyurethanes Containing Long-Segment Fluorinated Chain Extenders.,” Polymers, Vol. 10, pp. 1292 (2018).
8. Jing X., Mi H.Y., Peng X.F., Turng L.S. “The Morphology, Properties, and Shape Memory Behavior of Polylactic Acid/Thermoplastic Polyurethane Blends,” Polymer Engineering & Science, Vol. 55, pp. 70-80 (2015).
9. Chiu S.H., Wu C.L., Tsou C.Y., Lee H.T., Tsou C.H., Suen M.C. “Study of the synthesis and properties of polyurethane containing pyridyl units for shape memory,” Polymer Bulletin, Vol. 73, pp. 1303-1320 (2016).
10. Chen J., Zhang Z.X., Huang W.B., Yang J.H., Wang Y., Zhou Z. W., Zhang J.H. “Carbon nanotube network structure induced strain sensitivity and shape memory behavior changes of thermoplastic polyurethane,” Materials & Design, Vol. 69, pp. 105-113 (2015).
11. Hebbar R.S., Isloor A.M., Ananda K., Ismail A.F. “Fabrication of polydopamine functionalized halloysite nanotube/polyetherimide membranes for heavy metal removal,” Journal of Materials Chemistry A, Vol. 4, pp. 764-774 (2016).
12. Zare Y., Rhee K.Y., “Effects of critical interfacial shear modulus between polymer matrix and nanoclay on the effective interphase properties and tensile modulus of nanocomposites,” Construction and Building MATERIALS, Vol. 247, pp. 118536 (2020)
13. Carrola J., Bastos V., Daniel-da-Silva A.L., Gil A.M., Santos c., Oliveira H., Duarte L.F., "Macrophage Metabolomics Reveals Differential Metabolic Responses to Subtoxic Levels of Silver Nanoparticles and Ionic Silver," European Journal of Inorganic Chemistry, (2020).
14. Haggag E.G., Elshamy A.M., Rabeh M.A, Gabr N.M, Salem M., Youssif K.A., Samir A., Muhsinah A.B., Alsayari A., Abdelmohsen U.R. "Antiviral potential of green synthesized silver nanoparticles of Lampranthus coccineus and Malephora lutea," International Journal of Nanomedicine, Vol. 14, pp. 6217-6229 (2019).
15. Buttacavoli M., Albanese N.N., Cara G.D., Alduina R., Faleri C., Gallo M., Pizzolanti G., Gallo G., Feo S., Baldi F., Cancemi P. "Anticancer activity of biogenerated silver nanoparticles: an integrated proteomic investigation," Oncotarget, Vol. 9, pp. 9685-9705 (2018).
16. Joussein E., Petit S., Churchman J., Theng B., Righi D., Delvaux B. "Halloysite clay minerals — a review," Clay Minerals, Vol. 40, pp. 383-426 (2005).
17. Joussein E. "Chapter 2 - Geology and Mineralogy of Nanosized Tubular Halloysite," Developments in Clay Science, Vol.7, pp.12-48 (2016).
18. Yeganeh H., Shamekhi M.A. "Poly(urethane-imide-imide), a new generation of thermoplastic polyurethane elastomers with enhanced thermal stability," Polymer, Vol. 45, pp. 359-365 (2004).
19. Zheng N., Fang Z., Zou W., Zhao Q., Xie T. “Thermoset Shape‐Memory Polyurethane with Intrinsic Plasticity Enabled by Transcarbamoylation,” Angewandte Chemie International Edition, Vol. 55, pp. 11421-11425 (2016).
20. Zhao Q., Qi H.J., Xie T. “Recent progress in shape memory polymer: New behavior, enabling materials, and mechanistic understanding,” Progress in Polymer Science, Vol. 49, pp. 79-120 (2015).
21. Hu J.L., Ji F.L., Wong Y.W. “Dependency of the shape memory properties of a polyurethane upon thermomechanical cyclic conditions,” Polymer international, Vol. 54, pp. 600-605 (2005).
22. Safranski D.L., Boothby J.M., Kelly C.N., Beatty K., Lakhera N., Frick C.P., Lin A., Guldberg R.E., Griffis, J.C. “Thermo-mechanical behavior and structure of melt blown shape-memory polyurethane nonwovens., Journal of the mechanical behavior of biomedical materials, Vol. 62, pp. 545-555 (2016).
23. Hebbar R.S., Isloor A.M., Ananda K., Ismail, A.F. “Fabrication of polydopamine functionalized halloysite nanotube/polyetherimide membranes for heavy metal removal,” Journal of Materials Chemistry A, Vol. 4, pp. 764-774 (2016).
24. Zeng G., He Y., Zhan Y., Zhang L., Pan Y., Zhang C., Yu Z. “Novel polyvinylidene fluoride nanofiltration membrane blended with functionalized halloysite nanotubes for dye and heavy metal ions removal,” Journal of hazardous materials, Vol. 317, pp. 60-72 (2016).
25. Fink J.K. "Poly(urethane)s," Reactive Polymers: Fundamentals and Applications, pp. 71-138 (2018).
26. Liu Y., Xie F., Weiss R.A., Leng J. "A polyolefin/vinyl pyridine series shape memory elastomer and its making method," (2016).
27. Massaro M., Amorati R., Cavallaro G., Guernelli S., Lazzara G., Milioto S., Noto R., Poma P., Riela S. “Direct chemical grafted curcumin on halloysite nanotubes as dual-responsive prodrug for pharmacological applications.,” Colloids and Surfaces B: Biointerfaces, Vol. 140, pp. 505-513 (2016).
28. Zeng G., He Y., Zhan Y., Zhang L., Pan Y., Zhang C., Yu Z. “Novel polyvinylidene fluoride nanofiltration membrane blended with functionalized halloysite nanotubes for dye and heavy metal ions removal,” Journal of hazardous materials, Vol. 317, pp. 60-72 (2016).
29. Kamble R., Ghag M., Gaikawad S., Panda B.K., “Halloysite nanotubes and applications: A review,” Advances in Science and Research, Vol. 3, pp. 25–29 (2012).
30. Soloperto G., Conversano F., Greco A., Casciaro E., Ragusa A., Leporatti S., Lay-Ekuakille A., Casciaro S. “Multiparametric Evaluation of the Acoustic Behavior of Halloysite Nanotubes for Medical Echographic Image Enhancement,” IEEE Transactions on Instrumentation and Measurement, Vol. 63, pp. 1423-1430 (2014).
31. Kumar A., Vemula P.K., Ajayan P.M., John G. “Silver-nanoparticle-embedded antimicrobial paints based on vegetable oil.,” Nature Materials, Vol. 7, pp. 236-241 (2008).
32. Husheng J., Wensheng H., Liqiao W., Bingshe X., Xuguang L. “The structures and antibacterial properties of nano-SiO2 supported silver/zinc–silver materials,” Dental Materials, Vol. 24, pp. 244-249 (2008).
33. Silver S. “Bacterial silver resistance: molecular biology and uses and misuses of silver compounds.,” FEMS Microbiology Reviews, Vol. 27, pp. 341-353 (2003).
34. Atiyeh B.S., Costagliola M., Hayek S.N., Dibo S.A. “Effect of silver on burn wound infection control and healing: review of the literature.,” Burns, Vol. 33, pp. 139-148 (2007).
35. Yuranova T., Rincon A.G., Bozzi A., Parra S., Pulgarin C., Albers P., Kiwi J. “Antibacterial textiles prepared by RF-plasma and vacuum-UV mediated deposition of silver,” Journal of Photochemistry and Photobiology A: Chemistry, Vol. 161, pp. 27-34 (2003).
36. Jeong S.H., Yeo S.Y., Yi S.C. “The effect of filler particle size on the antibacterial properties of compounded polymer/silver fibers,” Journal of Materials Science, Vol. 40, pp. 5407-5411 (2005).
37. Panáček A., Kvítek L., Prucek R., Kolář M., Večeřová R., Pizúrová N., Sharma K.V., Nevěčná T., Zbořil R. “Silver Colloid Nanoparticles:  Synthesis, Characterization, and Their Antibacterial Activity,” The Journal of Physical Chemistry B, Vol. 110, pp. 16248-16253 (2006).
38. Zhang S., Jiang H., Xu Y., Zhang D. "Thermal and crystalline properties of water‐borne polyurethanes based on IPDI, DMPA, and PEBA/HNA," Journal of Applied Polymer Science, Vol. 103, pp. 1936-1941 (2007).
39. Chung Y.C., Choi J.W., Chung H.M., Chun B.C."The MDI-Mediated Lateral Crosslinking of Polyurethane Copolymer and the Impact on Tensile Properties and Shape Memory Effect," Bulletin of the Korean Chemical Society, Vol.33, pp.692-694 (2012).
40. Zhong Z.S., Li W.B., Xue W.B. "Study on moisture permeation and waterproof function of bi-component PU coating for fabrics," TEXTILE AUXILIARIES, Vol.26, pp.12-14 (2005).
41. Zeng G., He Y., Zhan Y., Zhang L., Pan Y., Zhang C., Yu Z. “Novel polyvinylidene fluoride nanofiltration membrane blended with functionalized halloysite nanotubes for dye and heavy metal ions removal.,” Journal of hazardous materials, Vol. 317, pp. 60-72 (2016).
42. Ratna D., Karger-Kocsis J. “Recent advances in shape memory polymers and composites: a review,” Journal of Materials Science, Vol. 43, pp. 254-269 (2008).
43. Yuan H., Chen S., Chen S., Ge Z. “Studies on Moisture-Sensitive Shape Memory Behavior of IPDI–BINA Based Polyurethane,” International Journal of Chemical Engineering and Applications, Vol. 4, pp. 191-193 (2013).
44. Zou F., Chen H., Chen S., Zhuo H. “Development of supramolecular shape-memory polyurethanes based on Cu(II)–pyridine coordination interactions,” Journal of Materials Science, Vol. 54, pp. 5136-5148 (2019).
45. Chen J., Zhang Z.X., Huang W.B., Li J.L., Yang J.H., Wang Y., Zhou Z.W., Zhang J.H., “Carbon nanotube network structure induced strain sensitivity and shape memory behavior changes of thermoplastic polyurethane,” Materials and Design, Vol. 69, pp. 105-113 (2015).
46. Sun P., Liu G., Lv D., Dong X., Wu J., Wang, D. “Effective activation of halloysite nanotubes by piranha solution for amine modification via silane coupling chemistry,” RSC Advances, Vol. 5, pp. 52916-52925 (2015).
47. Lara H.H., Ixtepan-Turrent L., Jose Yacaman M., Lopez-Ribot J., “Inhibition of Candida auris Biofilm Formation on Medical and Environmental Surfaces by Silver Nanoparticles,” ACS Applied Materials & Interfaces (2020).
48. Subramaniana P., Ravichandranb A., Manoharanb V., Muthukaruppanc R., Somasundaramc S., Pandid B., Krishnane A., Marimuthub P.N., Somasundaram S.S.N., You S.G. “Synthesis of Oldenlandia umbellata stabilized silver nanoparticles and their antioxidant effect, antibacterial activity, and bio-compatibility using human lung fibroblast cell line WI-38,” Process Biochemistry, Vol. 86, pp. 196-204 (2019).
49. Devi R.R., Umlong I.M., Policegoudra R., Das B., Basumotary M., Gogoi H.K., Raju P.S. “Stable silver nanoparticles comprising green synthesised silver nanoparticles,” Defence Research & Development Organisation (2020)
50. Falcón J.M., Sawczen T., Aoki I. “Dodecylamine-Loaded Halloysite Nanocontainers for Active Anticorrosion Coatings,” Frontiers in Materials, Vol. 2, pp. 1-13 (2015).
51. Yang Z., Zhenga X., Zheng J. "Non-enzymatic sensor based on a glassy carbon electrode modified with Ag nanoparticles/polyaniline/halloysite nanotube nanocomposites for hydrogen peroxide sensing," RSC Advances, Vol. 6, pp. 58329-58335 (2016).

無法下載圖示 全文公開日期 2025/07/22 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE