簡易檢索 / 詳目顯示

研究生: 鄭守義
Shou-Yi Cheng
論文名稱: 新穎Aurod-Pdshell-Ptcluster奈米桿狀金屬觸媒於電流式葡萄糖與尿酸感測器之製備與應用
Fabrication and applications of amperometric glucose and uric acid biosensor based on novel Aurod-Pdshell-Ptcluster nanocatalyst
指導教授: 黃炳照
Bing-Joe Hwang
口試委員: 周宏隆
Hung-Lung Chou
周澤川
Tse-Chuan Chou
王詩涵
Shih-Han Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 171
中文關鍵詞: 三元奈米金屬觸媒(Aurod-Pdshell-Ptcluster)雙氧水氧化反應葡萄糖感測器尿酸感測器
外文關鍵詞: Trimetallic nanocatalyst Aurod-Pdshell-Ptcluster, Hydrogen peroxide oxidation reaction, Glucose-biosensor, Uric acid-biosensor
相關次數: 點閱:270下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究中主要將研究之方向分為二大主軸: (I) 合成三元金屬觸媒(Aurod-Pdshell-Ptcluster)探討於電化學式雙氧水氧化反應之感測分析。(II)製備葡萄糖與尿酸生物微型感測試片。
(I) 此研究成功以晶核成長還原法將兩種奈米金屬顆粒(Pt、Pd)沉積於金奈米桿上(Aurod-Pdshell-Pdcluster),並具有良好的型態,同時本研究也利用XRD、UV、TEM、ICP以及XAS進行材料分析。雙氧水電化學感測器之製備方式以奈米金屬觸媒修飾於玻璃碳電極表面,並發現以Aurod-Pdshell-Pdcluster ¬所製備之雙氧水感測器的效能比商業化鉑觸媒(JM-Pt)來的高,並利用XAS、XPS以及活性表面積來證明。另外,從電化學測試上發現以Aurod-Pdshell-Pdcluster所製備出的雙氧水感測器具有良好的再現性、安定性與抗干擾能力。
(II) 建立最適化電極感測層之結構,並轉移至微型電極感測試片,利用添加微量交聯劑-戊二醛,使其形成網狀結構固定酵素於微型電極表面上,由葡萄糖與尿酸酵素動力學反應Michaelics-Menten constant分別為10.2 mM、0.7 mM與穩定性測試探討(電極保存30天後效能約減少1.5 %與11.4 %)等結果得知,製備之酵素感測器不僅能提供快速固定酵素於電極表面,所形成之三維空間網狀薄膜幫助酵素與待測物質間進行生物反應,使酵素具良好之親合性與穩定性。
本研究中製備之葡萄糖感測器於0.4 V v.s Ag/AgCl之施加電位下,具有感測葡萄糖雙線性範圍為0.5至7.4 mM (R2 = 0.99) 及7.4至22 mM(R2 = 0.99),且其偵測靈敏度為49及23 μA/mMcm2,此觸媒感測器亦能使用於尿酸感測上,其製備之尿酸感測器於0.4 V v.s Ag/AgCl之施加電位下,具有感測尿酸線性範圍為0.0459 mM至1.91 mM (R2 = 0.99),且其偵測靈敏度為55 μA/mMcm2,研究結果顯示,藉由合成之三元奈米金屬觸媒應用於生物感測器之製程系統,成功製備出具優良再現性與量測準確度、結構穩定之高靈敏度微型葡萄糖與尿酸感測試片。


This study is comprised of two parts: (I) The synthesis of trimetallic Aurod-Pdshell-Ptcluster nanocatalysts for the applications of electrochemical sensing of hydrogen peroxide. (II) Fabrication of glucose and uric acid thin film model sensor strip.
(I) A new highly catalytic and intensely sensitive amperometric sensor based on Pt and Pd nanoparticles (NPs) for the rapid and accurate estimation of hydrogen peroxide (H2O2) by electrooxidation in physiological conditions is reported. Pd and Pt NPs-decorated Aurod nanocatalysts (Aurod-Pdshell-Ptcluster) were prepared by a Seed-growth method, and were characterized by XRD, UV, TEM, ICP and XAS. The sensors were constructed by immobilizing Aurod-Pdshell-Ptcluster nanocatalysts on a glassy carbon electrode. The Aurod-Pdshell-Ptcluster sensor showed a better performance in H2O2 sensing than did the commercial (JM-Pt). Explanations were sought from XAS, XPS, ECSA measurements to explain the reasons for differences in sensor activity. In addition, the Aurod-Pdshell-Ptcluster nanocatalyst sensor electrode also exhibited excellent reproducibility and stability. Along with these attractive features, the sensor electrode also displayed very high specificity to H2O2 with complete elimination of interference from UA, AA, AAP and glucose. The biosensor was constructed by immobilizing the Aurod-Pdshell-Ptcluster catalysts in Polypyrrol film on the Au/Ti micro-strip working electrode surface. An inner Polypyrrol film coating was used to eliminate common interferences such as UA, AA, AAP and glucose. Finally, an enzyme layer was fabricated by electrostatic adsorbed method. In addition, the biosensor exhibited high reproducibility, good storge stability and satisfactory anti-interference ability.
(II) The sensing layers with optimum structure were developed and fabricated on mini-sensor strips. The additions of cross-linking agent to ensure the combination . The solution recipe and parameters for electrochemical polymerization of pyrrole were optimized. The enzyme kinetics of glucose and uric acid (Michaelics-Menten constant = 10.3 and 0.7 mM, respectively) and stability tests have been demonstrated that the sensitivity decay of the assembled electrodes is around 1.5 % and 11.4 % after 30 days. It shows that the assembled sensor prepared under this condition provides mild environment for enzyme immobilization and 3D network membrane facilitate the bio-reaction between enzyme and bio-species, which makes enzyme exhibiting good affinity and stability.
The prepared glucose sensor exhibits sensitivity of 49 μAmM-1cm-2 in detection ranges between 0.5 to 7.4 mM, and sensitivity of 23 μAmM-1cm-2 in detection ranges between 7.4 to 22 mM (R2 =0.990) at 0.4 V (vs. Ag/AgCl). On the other hand, the uric acid sensor also exhibits a sensitivity of 55 μAmM-1cm-2 in detection ranges between 0.0459 to 1.91 mM (R2 =0.990) at 0.4 V (vs. Ag/AgCl). The results show that the glucose and uric acid strips with a high sensitivity, reproducibility and stability was successfully prepared.

摘要 I ABSTRACT III 誌謝 V 目錄 VI 圖引索 X 表引索 XIV 第一章、緒論 1-1、前言 1-2、糖尿病概述 1-2-1、糖尿病簡介 1-2-2、糖尿病定義與分類 1-2-3、糖尿病之臨床診斷標準 1-2-4、糖尿病檢測方法 1-3、尿酸概述 1-3-1、尿酸簡介 1-3-2、尿酸來源與代謝 1-3-3、尿酸於人體內的正常值 1-3-4、尿酸引發的疾病 1-4、葡萄糖生物感測器之發展史 1-4-1、第一代葡萄糖生物感測器 1-4-2、第二代葡萄糖生物感測器 1-4-3、第三代葡萄糖生物感測器 1-5、尿酸生物感測器之發展史 1-5-1、酵素催化型 1-5-2、添加電子傳遞物 1-5-3、電極直接催化 1-6、研究動機 第二章 理論基礎與文獻回顧 2-1、感測器簡介 2-2、化學感測器簡介 2-3、生物感測器簡介 2-3-1、生物感測器定義 2-3-2、生物感測器之基本構造與原理 2-3-3、生物感測器種類 2-3-4、訊號換能器分類 2-4、電化學式生物感測器[49, 52-54] 2-4-1、電位式 (Potentiometric) 生物感測器[46] 2-4-2、電流式 (Amperometry) 生物感測器 2-4-3、電導式 (Conductometric) 生物感測器[48] 2-5、酵素簡介 2-5-1、酵素特性 2-5-2、酵素的分類 2-5-3、酵素專一性反應 2-5-4、等電點 2-6、生物分子固定化技術[53] 2-6-1、吸附法 (Adsorption) 2-6-2、包埋法 (Entrapment) 2-6-3、共價鍵結法 (Covalent attachment) 2-6-4、交聯架橋法 (Cross-linking) 2-7、奈米金屬粒子 2-7-1、奈米粒子之簡介 2-7-2、奈米粒子之製備方法 2-7-3、奈米粒子於生物感測器之文獻回顧 2-8、抗干擾層(ANTI-INTERFERENCE LAYER) 2-8-1、離子選擇膜(Permselective membrane) 2-8-2、電子傳遞介質(Mediator) 2-8-3、普魯士藍 (Prussian Blue) 2-8-4、奈米金屬觸媒(Nano-metallic Particle) 2-9、電化學式生物感測器電極製作技術 2-9-1、厚膜技術 (Thick-film technology) [102, 103] 2-9-2、薄膜技術(Thin film technology) [103-105] 第三章 實驗設備與合成方法 3-1、實驗藥品與樣品製備 3-1-1、實驗藥品 3-1-2、樣品製備 3-2、實驗設備 3-2-1、分析儀器 3-2-2、薄膜製程設備 3-2-2-1、薄膜製程實驗材料 3-2-1-2、磁控射頻濺鍍系統 3-3、實驗方法 3-3-1、奈米金屬觸媒合成方法 3-4、雙氧水感測電極製備 3-4-1、奈米金屬觸媒修飾於玻璃碳電極 3-5、葡萄糖與尿酸微型感測電極製備 3-5-1、微型電極製程 3-5-2、奈米金屬觸媒修飾於微型電極 3-5-3、吡咯(Pyrrole)溶液之製備 3-5-4、聚吡咯(PolyPrrole)修飾於觸媒電極之製備 3-4-5、葡萄糖酵素(GOx) 修飾電極之製備 3-5-6、尿酸酵素(UOx)修飾電極之過程 3-5-7、葡萄糖與尿酸感測電極之修飾過程 3-6、實驗架構 3-7、分析儀器與方法 3-7-1、X光繞射分析儀 (X-ray Diffraction , XRD) 3-7-2、感應偶合電漿放射光譜儀分析(ICP-AES) 3-7-3、穿透式電子顯微鏡分析(TEM) 3-7-4、掃描式電子顯微鏡分析(SEM) 3-7-5、傅立葉轉換紅外線光譜儀(FT-IR) 3-7-6、紫外線/可見光分光光譜儀(UV-vis) 3-8、電化學分析原理 3-8-1、旋轉電極之電化學測試系統 3-8-2、旋轉盤電極[111] 3-8-3、循環伏安法(Cyclic Voltammetry , CV) 3-8-4、電流響應法 (Amperometric Method) 第四章 結果與討論 4-1、奈米金屬觸媒之材料結構分析 4-1-1、感應耦合電漿放射光譜分析(ICP-AES) 4-1-2、TEM觸媒顆粒大小與型態分析 4-1-3、XRD晶相形態分析 4-1-4、紫外光/可見光分光光譜分析 4-1-5、奈米金屬觸媒性質與XPS圖譜分析 4-1-6、奈米金屬觸媒性質與XAS圖譜分析 4-2、奈米金屬觸媒之電化學特性分析 4-2-1、奈米金屬觸媒於硫酸前處理與活性表面積之探討 4-2-2、奈米金屬觸媒於雙氧水感測分析 4-2-3、微型葡萄糖感測試片分析 4-2-4、微型尿酸感測試片分析 第五章 結論 第六章 未來方向 文獻回顧

[1]吳祐福. 鉑銥雙金屬觸媒修飾之奈米碳管應用於葡萄糖感測器暨反應性濺鍍氮化鉬薄膜及其作為銅製程中阻障層等之研究. 2011.
[2]Cavalot, F., Petrelli, A., Traversa, M., Bonomo, K., Fiora, E., Conti, M., Postprandial blood glucose is a stronger predictor of cardiovascular events than fasting blood glucose in type 2 diabetes mellitus, particularly in women: Lessons from the San Luigi Gonzaga diabetes study. Journal of Clinical Endocrinology and Metabolism. 2006;91, 813-819.
[3]Alberti, K.G.M.M., Zimmet, P.Z., Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: Diagnosis and classification of diabetes mellitus. Provisional report of a WHO consultation. Diabetic Medicine. 1998;15,539-553.
[4]World Health Organization (WHO). Definition and diagnosis of diabetes mellitus and intermediate hyperglycemia.
[5]Suckale, J.S., M. Pancreas islets in metabolic signaling-focus on the beta-cell. Front Biosci. 2008;13.
[6]Laval, J.M., Mazeran, P.E., Thomas, D., Nanobiotechnology and its role in the development of new analytical devices. Analyst. 2000;125, 29-33.
[7]Newman, J.D., Turner, A.P.F., Home blood glucose biosensors: A commercial perspective. Biosensors and Bioelectronics. 2005;20:2435-53.
[8]Heller, A., Feldman, B., Electrochemical glucose sensors and their applications in diabetes management. Chemical Reviews. 2008;108:2482-505.
[9]Wang, X.D., Chen, H.X., Zhou, T.Y., Lin, Z.J., Zeng, J.B., Xie, Z.X., Optical colorimetric sensor strip for direct readout glucose measurement. Biosensors and Bioelectronics. 2009;24:3702-5.
[10]Cheng Teng, H., Hung Chan, H., Mei Yen, F., Jyh Myng, Z., Superior long-term stability of a glucose biosensor based on inserted barrel plating gold electrodes. Biosensors and Bioelectronics. 2009;25,383-387.
[11]Atanasov, P., Kaisheva, A., Iliev, I., Razumas, V., Kulys, J., Glucose biosensor based on carbon black strips. Biosensors and Bioelectronics. 1992;7:361-5.
[12]Vashist, S.K., Zheng, D., Al-Rubeaan, K., Luong, J.H.T., Sheu, FS., Technology behind commercial devices for blood glucose monitoring in diabetes management: A review. Analytica Chimica Acta. 2011;703:124-36.
[13]Wang, J., A review of recent technology. 1998.
[14]西岡久壽樹. 圖解家庭醫學痛風不要來. 2008.
[15]細谷龍男、奈良昌治. 尿酸值健康診療. 2004.
[16]林助雄. 痛風症. 1983.
[17]趙辰濤. 電流式尿酸生物感測器之製備與測試. 2009.
[18]CLARK Jr, L.C., LYONS, C., Electrode systems for continuous monitoring in cardiovascular surgery. Annals of the New York Academy of Sciences 1962;102.
[19]Lubrano, G.G.Ga.GJ., An enzyme electrode for the amperometric determination of glucose Analytica Chimica Acta. 1973;64:439-55.
[20]Chen, K.J., Lee, C.F., Rick, J., Wang, S.H., Liu, C.C., Hwang, B.J., Fabrication and application of amperometric glucose biosensor based on a novel PtPd bimetallic nanoparticle decorated multi-walled carbon nanotube catalyst. Biosensors and Bioelectronics. 2012;33:75-81.
[21]Chaubey, A., Malhotra, B.D., Mediated biosensors. Biosensors and Bioelectronics. 2002;17:441-56.
[22]李坤易. 高感度葡萄糖生物感測器之研究 95.
[23]AWJAC, D.H., Amperometric enzyme electrodes: theory and experiment. Biosensors:
Fundaments and Applications.Chap 12 pp 180-210.
[24]Ghindilis, A.L., Atanasov, P., Wilkins, E., Enzyme-Catalyzed Direct Electron Transfer: Fundamentals and Analytical Applications. Electroanalysis. 1997;9:661-74.
[25]Arora, K., Tomar, M., Gupta, V., Highly sensitive and selective uric acid biosensor based on RF sputtered NiO thin film. Biosensors and Bioelectronics. 2011;30:333-6.
[26]Jindal, K., Tomar, M., Gupta, V., CuO thin film based uric acid biosensor with enhanced response characteristics. Biosensors and Bioelectronics. 2012.
[27]Hoshi , T., Anzai,.J., Talanta. 2003;61:363-8.
[28]Zhang, F., Wang, X., Ai, S., Sun, Z., Wan, Q., Zhu, Z., Immobilization of uricase on ZnO nanorods for a reagentless uric acid biosensor. Analytica Chimica Acta. 2004;519:155-60.
[29]Zhang, F., Li, C., Li, X., Wang, X., Wan, Q., Xian, Y., ZnS quantum dots derived a reagentless uric acid biosensor. Talanta. 2006;68:1353-8.
[30]Luo, Y.C., Do, J.S., Liu, C.C., An amperometric uric acid biosensor based on modified Ir-C electrode. Biosensors and Bioelectronics. 2006;22:482-8.
[31]Kuwabata, S., Nakaminami, T., Ito, S.I., Yoneyama, H., Preparation and properties of amperometric uric acid sensors. Sensors and Actuators, B: Chemical. 1998;52:72-7.
[32]Nakaminami, S.I., Kuwabata, S., Yoneyama. H., Analytical Chemistry. 1999;71:4278-83.
[33]文詩婷. 電流式尿酸生物感測器之開發及應用. 2000.
[34]Raj, C.R., Ohsaka, T., Voltammetric detection of uric acid in the presence of ascorbic acid at a gold electrode modified with a self-assembled monolayer of heteroaromatic thiol. Journal of Electroanalytical Chemistry. 2003;540:69-77.
[35]He, F., Tang, Y., Yu, M., Wang, S., Li, Y., Zhu, Fluorescence-amplifying detection of hydrogen peroxide with cationic conjugated polymers, and its application to glucose sensing Advanced Functional Materials 2006;16:91-4.
[36]Soichi Hanaoka, J.M.L., Chemiluminescent flow sensor for H2O2 based on the decomposition of H2O2 catalyzed by cobalt(II)-ethanolamine complex immobilized on resin. Analytica Chimica Acta. 2011;426:57-64
[37]Hrapovic, S., Liu, Y., Male, K.B., Luong, J.H.T. Electrochemical Biosensing Platforms Using Platinum Nanoparticles and Carbon Nanotubes, Analytical Chemistry 2004;76:1083-8
[38]Miscoria, S.A., Barrera, G.D., Rivas, G.A., Analytical Performance of a Glucose Biosensor Prepared by Immobilization of Glucose Oxidase and Different Metals into a Carbon Paste Electrode. Electroanalysis. 2002;14:981-7.
[39]Lu, J., Do, I., Drzal, L.T., Worden, R.M., Lee, I., Nanometal-Decorated Exfoliated Graphite Nanoplatelet Based Glucose Biosensors with High Sensitivity and Fast Response. ACS Nano. 2008;2:1825-32.
[40]Zou, Y., Xiang, C., Sun, L.X., Xu, F., Glucose biosensor based on electrodeposition of platinum nanoparticles onto carbon nanotubes and immobilizing enzyme with chitosan-SiO2 sol–gel. Biosensors and Bioelectronics. 2008;23:1010-6.
[41]Che, X., Yuan, R., Chai, Y., Li, J., Song, Z., Li, W., A glucose biosensor based on chitosan–Prussian blue–multiwall carbon nanotubes–hollow PtCo nanochains formed by one-step electrodeposition. Colloids and Surfaces B: Biointerfaces. 2011;84:454-61.
[42]黃炳照、莊睦賢. 電化學感測器. 化工技術. 1999;第七卷.
[43] Hage, D.S., Analytical Chemistry. 1999.
[44]王宗興. 分子辨識與感測器http://www.chemedu.ch.ntu.edu.tw/lecture/molecular/2.htm. 2001.
[45]Castillo, J., Gaspar, S., Leth, S., Niculescu, M., Mortari A, Bontidean I, Biosensors for life quality: Design, development and applications. Sensors and Actuators B: Chemical. 2004;102:179-94.
[46]蘇宏基編著. 附錄一 化學生物感測器講義. 東華大學化學系.
[47]Mohanty, S.P., Kougianos, E., Biosensors: a tutorial review. Potentials, IEEE. 2006;25:35-40.
[48]Shen, J., Development & Characterization of thick-film printed electrochemical biosensor. Cleveland,Ohio: Case Western Reserve University; 2007.
[49]陳冠榮. 以奈米金修飾電極製備電流式免疫型感測器: 國立台灣科技大學; 2008.
[50]許峰碩. 奈米碳黑在免疫層析檢測上的應用: 國立中興大學化學; 2002.
[51]Spichiger Keller, U.E., Chemical Sensors and Biosensors for Medical and Biological Applications: Wiley-VCH; 1998.
[52]Bard, A.J. LF., Electrochemical Methods Fundaments and applications. New York: Wiley; 2001.
[53]汪玉銘. 定電流聚合導電性高分子法製備葡萄糖生物感測器之研究: 國立成功大學 2003.
[54]洪珮珍. 奈米結構葡萄糖感測器的製備與活性分析: 南台科技大學 2004.
[55]Yalcinkaya, F., Powner, E.T., Intelligent structures. Sensor Review. 1996;16:32-7.
[56]D'Orazio P. Biosensors in clinical chemistry. Clinica Chimica Acta. 2003;334:41-69.
[57]Heineman, P.T.K.W.R., Laboratory Techniques in Electroanalytical Chemistry. 2 ed. New York: Marcel Dekker; 1996.
[58]Mehrvar, M., Abdi, M., Recent developments, characteristics, and potential appl
ications of electrochemical biosensors. Analytical Sciences. 2004;20:1113-26.
[59]劉英俊. 酵素工程: 中央圖書出版社; 1995.
[60]洪爭坊、郭肇凱、張正英. 淺談酵素: 台中區農情月刊; 2007.
[61]呂鋒洲,林仁混. 基礎酵素學: 聯經出版社; 1991.
[62]林哲瑩. 高敏度表面與高解析技術診斷具疾病表現知單一核苷酸多
[63]葉旻鑫. 均勻結構之複合式鉑銥奈米金屬觸媒/葡萄糖氧化酵素電極及其製備與應用.
[64]Gamati, S., Luong, J.H.T., Mulchandani A. A microbial biosensor for trimethylamine using Pseudomonas aminovorans cells. Biosensors and Bioelectronics. 1991;6:125-31.
[65]Jones, T.P., Porter, M.D., Optical pH sensor based on the chemical modification of a porous polymer film. Analytical Chemistry. 1988;60:404-6.
[66]Zhujun, Z., Seitz, W.R., Optical sensor for oxygen based on immobilized hemoglobin. Analytical Chemistry. 1986;58:220-2.
[67]Ratner, B.D., biomaterials science an introduction to materials in medicine academic press. 1996:124-30.
[68]Gill, I., Ballesteros A. Encapsulation of biologicals within silicate, siloxane, and hybrid sol- gel polymers: An efficient and generic approach. Journal of the American Chemical Society. 1998;120:8587-98.
[69]Cabral, J.M.S., Kennedy, J.F. Covalent and coordination immobilization of proteins. In: Taylor, R.F. (Ed.), Protein Immobilization; Fundamentals and Applications. Marcel Dekker. New York1991.
[70]Taylor, R.F., Development and applications of antibody- and receptor-based biosensors Boston,MA;Butterworths.
[71]Shen, J., Dudik, L., Liu, C.C., An iridium nanoparticles dispersed carbon based thick film electrochemical biosensor and its application for a single use, disposable glucose biosensor. Sensors and Actuators B-Chemical. 2007;125:106-13.
[72]陳冠榮. 以奈米金修飾電極製備電流式免疫型感測器. 2006.
[73]王世敏,許祖勛,傅晶. 奈米材料原理與製備: 五南出版社; 2004.
[74]Yonezawa, Y., Sato, T., Kuroda, S., Kuge, K., Photochemical formation of colloidal silver: Peptizing action of acetone ketyl radical. Journal of the Chemical Society, Faraday Transactions. 1991;87:1905-10.
[75]Okitsu, K., Bandow, H., Maeda, Y., Nagata, Y., Sonochemical preparation of ultrafine palladium particles. Chemistry of Materials. 1996;8:315-7.
[76]Antolini, E., Cardellini, F., Formation of carbon supported PtRu alloys: An XRD analysis. Journal of Alloys and Compounds. 2001;315:118-22.
[77]Takasu, Y., Fujiwara, T., Murakami, Y., Sasaki, K., Oguri, M., Asaki, T., Effect of structure of carbon-supported PtRu electrocatalysts on the electrochemical oxidation of methanol. Journal of the Electrochemical Society. 2000;147:4421-7.
[78]Watanabe, M., Uchida, M., Motoo, S., Preparation of highly dispersed Pt + Ru alloy clusters and the activity for the electrooxidation of methanol. Journal of Electroanalytical Chemistry. 1987;229:395-406.
[79]Hamnett, A., Kennedy, B.J., Wagner, F.E., PtRu anodes for methanol electrooxidation: A ruthenium-99 Mo?ssbauer study. Journal of Catalysis. 1990;124:30-40.
[80]Wang, X., Hsing, I.M., Surfactant stabilized Pt and Pt alloy electrocatalyst for polymer electrolyte fuel cells. Electrochimica Acta. 2002;47:2981-7.
[81]Liu, Z., Lee, J.Y., Chen, W., Han, M., Gan, L.M., Physical and Electrochemical Characterizations of Microwave-Assisted Polyol Preparation of Carbon-Supported PtRu Nanoparticles. Langmuir. 2004;20:181-7.
[82]Zhang, X., Chan, K.Y., Water-in-oil microemulsion synthesis of platinum-ruthenium nanoparticles, their characterization and electrocatalytic properties. Chemistry of Materials. 2003;15:451-9.
[83] Nalwa, H.S., Academic press. 2000.
[84]張義泉. 具界面活性擬樹枝狀聚乙烯亞胺之合成與製備燃料電池觸媒之應用: 國立成功大學; 2005.
[85]Reetz, M.T., Helbig, W., Quaiser, S.A., Electrochemical Preparation of Nanostructural Bimetallic Clusters. Chemistry of Materials. 1995;7:2227-8.
[86]Reetz, M.T., Quaiser, S.A., A new method for the preparation of nanostructured metal clusters. Angewandte Chemie (International Edition in English). 1995;34:2240-1.
[87]Wang, J., Rivas, G., Chicharro, M., Iridium-dispersed carbon paste enzyme electrodes. Electroanalysis. 1996;8:434-7.
[88]Wang, J., Liu, J., Chen, L., Lu, F., Highly selective membrane-free, mediator-free glucose biosensor. Analytical Chemistry. 1994;66:3600-3.
[89]Wang, J., Fang, L., Lopez, D., Tobias, H., Highly Selective and Sensitive Amperometric Biosensing of Glucose at Ruthenium-Dispersed Carbon Paste Enzyme Electrodes. Analytical Letters. 1993;26:1819 - 30.
[90]Ming, L., Xi, X., Liu, J., Electrochemically platinized carbon paste enzyme electrodes: A new design of amperometric glucose biosensors. Biotechnology Letters. 2006;28:1341-5.
[91]Huang, J.S., Wang, D.W., Hou, H.Q., You, T.Y., Electrospun palladium nanoparticle-loaded carbon nanofibers and their electrocatalytic activities towards hydrogen peroxide and NADH. Advanced Functional Materials. 2008;18:441-8.
[92]Shim, J., Yoo, D.Y., Lee, J.S., Characteristics for electrocatalytic properties and hydrogen-oxygen adsorption of platinum ternary alloy catalysts in polymer electrolyte fuel cell. Electrochimica Acta. 2000;45:1943-51.
[93]An, K., Alayoglu, S., Ewers, T., Somorjai, G.A., Colloid chemistry of nanocatalysts: A molecular view. Journal of Colloid and Interface Science. 2012;373:1-13.
[94]Fan, F.R., Liu, D.Y., Wu, Y.F., Duan, S., Xie, Z.X., Jiang, Z.Y., Epitaxial growth of heterogeneous metal nanocrystals: From gold nano-octahedra to palladium and silver nanocubes. Journal of the American Chemical Society. 2008;130:6949-51.
[95]Grzelczak, M., Perez Juste, J., De Abajo, F.J.G., Liz Marzan, L.M., Optical properties of platinum-coated gold nanorods. Journal of Physical Chemistry C. 2007;111:6183-8.
[96]Cardinal, M.F., Mongin, D., Crut, A., Maioli, P., Rodríguez Gonzalez, B., Perez Juste, J., Acoustic vibrations in bimetallic Au@Pd core-shell nanorods. Journal of Physical Chemistry Letters. 2012;3:613-9.
[97]Guo, X., Brault, P., Zhi, G., Caillard, A., Jin, G., Structural evolution of plasma-sputtered core-shell nanoparticles for catalytic combustion of methane. Journal of Physical Chemistry C. 2011;115:24164-71.
[98]Sternberg, R., Bindra, D.S., Wilson, G.S., Thevenot, D., Covalent enzyme coupling on cellulose acetate membranes for glucose sensor development. Analytical Chemistry. 1988;60:2781-6.
[99]Zhilei, W., Zaijun, L., Xiulan, S., Yinjun, F., Junkang, L., Synergistic contributions of fullerene, ferrocene, chitosan and ionic liquid towards improved performance for a glucose sensor. Biosensors and Bioelectronics. 2010;25:1434-8.
[100]Wang, C., Chen, S., Xiang, Y., Li, W., Zhong, X., Che, X., Glucose biosensor based on the highly efficient immobilization of glucose oxidase on Prussian blue-gold nanocomposite films. Journal of Molecular Catalysis B: Enzymatic. 2011;69:1-7.
[101]Huang, J., Wang, D., Hou, H., You, T., Electrospun Palladium Nanoparticle-Loaded Carbon Nanofibers and Their Electrocatalytic Activities towards Hydrogen Peroxide and NADH. Advanced Functional Materials. 2008;18:441-8.
[102]郭晉川. Fe3O4 奈米微粒修飾性網印碳電極於乙醇生物感測器之研究. 國立雲林科技大學化學工程系碩士論文. 2006.
[103]施敏. 半導體元件物理與製作技術. 國立交通大學出版社. 2007.
[104]Taufik, P., Fabrication of a disposable glucose biosensor on screen-printed carbon electrodes. 國立台灣科技大學化學工程系. 2008.
[105]Laschi, S.,Medical Engineering and Physics. 2006;28:934.
[106]Faraday, M.P.T.R., The Bakerian Lecture Experimental Relations of Gold (and Other Metals) to Light. Soc London. 1857:145.
[107]Frens, G., Controlled Nucleation for the regulation of the particle size in monodisperse gold suspensions. Nature. 1973; 20.
[108]Wilcoxon, J.P.W., R, L., Baughman, R., Observations of non-close-packed arrangements in multilayers of passivated gold clusters. JChem Phys. 1993;98:9933.
[109]Rademann, K., Size dependent catalysis with CTAB-stabilized gold nanoparticles. Phys Chem. 2012;14:9343–9.
[110]Perez Juste, J., Gold nanorods: Synthesis, characterization and applications. Coordination Chemistry Reviews. 2005;249:1870–901.
[111]胡啟章. 電化學原理與方法: 五南圖書出版公司; 2002.
[112]彭文權. 以沈積法製備甲醇燃料電池用之Pt-Ru雙金屬觸媒,元智大學; 1997.
[113] Brian, R., Chemical, E., Sensors and Biosensors2005.
[114]Toshima, N., Core/shell-structured bimetallic nanocluster catalysts for visible-light-induced electron transfer. Pure and Applied Chemistry. 2000;72:317-25.
[115]Gajdos, M., Eichler, A., Hafner, J., CO adsorption on close-packed transition and noble metal surfaces: Trends from ab initio calculations. Journal of Physics Condensed Matter. 2004;16:1141-64.
[116]Reifsnyder, S.N., Hydrogen Chemisorption on Silica-Supported Pt Clusters: In Situ X-ray Absorption Spectroscopy. J Phys Chem B. 1997;88:4972-7.
[117]Mansour, A.N., Cook, J.W., Sayers, D.E., Quantitative technique for the determination of the number of unoccupied d-electron states in a platinum catalyst using the L2,3 x-ray absorption edge spectra. J Phys Chem. 1984;88:2330-4.
[118]Ramallo Lopez, J.M., XPS and XAFS Pt L2,3-Edge Studies of Dispersed Metallic Pt and PtSn Clusters on SiO2 Obtained by Organometallic Synthesis: Structural and Electronic Characteristics. J Phys Chem B. 2003;107:11441-51.
[119]Ankudinov, A.L., Nesvizhskii, A.I., Rehr, J.J.,.Hole counts from X-ray absorption spectra. J Synchrotron Radiat. 2001;8:92-5.
[120]Qing ning, J., Huan, L., Ning, Y., Ping ping, F., Feng ru, F., Zhong qun, T., Electrocatalytic Oxidation of HCOOH at Aucore-Pdshell-Ptcluster Nanocubes. ELECTROCHEMISTRY. 2010.
[121]Fang, P.P., Duan, S., Lin, X.D,, Anema, J.R., Li, J.F., Buriez, O., Tailoring Au-core Pd-shell Pt-cluster nanoparticles for enhanced electrocatalytic activity. Chemical Science. 2011;2:531-9.
[122]彭文權. 以沉積法製備甲醇燃料電池用之Pt-Ru雙金屬觸媒. 1997.
[123]Michael, L., Bishop EPF, and Larry Schoeff. Baltimore, MD. Clinical Chemistry: Principles, Procedures, Correlations: Lippincott Williams & Wilkins; 2005.
[124]劉豫川. 聚吡咯之改質及其老化機制之研究.1999
[125]Liang, W., Yusuke, Y., Autoprogrammed Synthesis of Triple-Layered Au@Pd@Pt Core−Shell Nanoparticles Consisting of a Au@Pd Bimetallic Core and Nanoporous Pt Shell. , JACS AM.CHEM.SOC. 2010,132, 13636–13638
[126]Perez Juste, J., Luis, M., Derek, Y.C., Mulvaney, P., Electric-Field-Directed Growth of Gold Nanorods in Aqueous Surfactant Solutions. Adv. Funct. Mater. 2004,14,571-579

無法下載圖示 全文公開日期 2017/07/30 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE