簡易檢索 / 詳目顯示

研究生: 陳冠婷
Kuan-ting Chen
論文名稱: 非線性有限元素分析於頸椎前方骨融合與人工椎間盤置換之生物力學研究
Biomechanical Comparison Between Anterior Cervical Discectomy and Fusion and Cervical Artificial Disc Replacement Using Nonlinear Finite Element Analyses
指導教授: 趙振綱
Ching-kong Chao
徐慶琪
Ching-chi Hsu
口試委員: 釋高上
Gao-shang Shih
林峻立
Jun-li Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 77
中文關鍵詞: 鄰近節退化頸椎頸椎前位椎間盤切除與骨融合手術頸椎人工椎間盤置換頸椎活動度
外文關鍵詞: Cervical spine, Anterior cervical plate
相關次數: 點閱:232下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

頸椎前位椎間盤切除與骨融合手術(ACDF)是一種常見的手術,其常用於治療人體頸椎退化或神經根減壓,但是頸椎融合手術可能會造成手術節的活動度喪失,進而造成鄰近節脊椎之退化問題。因此,為了保留頸椎的活動度,許多動態裝置不斷的被研究,例如:人工椎間盤置換手術(ADR),其手術方式為將退化的椎間盤去除,並植入人工椎間盤作取代,此方法能有效的減輕疼痛與回復原本椎體活動度,針對以上這兩種手術方式,過去有許多學者使用有限元素模型,分析頸椎融合手術與人工椎間盤置換術之生物力學性能,但是他們的數值模型較簡化,此可能造成結果的可信度較低。因此本研究希望透過較完整且公平的數值模擬方法,評估傳統骨融合手術與人工椎間盤置換術之生物力學性能,以供臨床醫師作參考。
本研究建立三維非線性有限元素頸椎模型C1-T2,並使用有限元素分析軟體ANSYS Workbench作為評估工具,而所有模型的約束條件皆設在模型底部(T2),並模擬頸椎C5-C6 椎間盤發生退化情形,本研究建立三種頸椎模型,包含:完整頸椎、頸椎前位椎間盤切除與骨融合手術、人工椎間盤置換術,三種模型分別施以前彎、後彎、側彎、旋轉之運動,找出手術後其手術節與鄰近節之生物力學結果,例如:頸椎整體活動度、頸椎各椎節活動度與椎間盤總應變能。
數值分析結果顯示,頸椎前位椎間盤切除與骨融合手術的活動度在手術節為減少,但在鄰近節為增加,這代表著頸椎融合手術穩定度較高,此外,手術鄰近節的椎間盤總應變能亦會增加,此會增加鄰近節退化的風險;而頸椎人工椎間盤置換術可維持手術節的活動度,且在手術鄰近節的活動度與椎間盤總應變能較接近完整頸椎,此可降低鄰近節退化的風險。因此,本研究所使用之多節段C1-T2三維非線性有限元素模型,將可有效的分析頸椎融合手術與人工椎間盤置換術之生物力學結果。


Anterior cervical discectomy and fusion is a common surgical procedure to treat spinal degeneration or nerve root compression. However, adjacent segment degeneration has been generally accepted as a long-term complication after spinal fusion surgery. Alternatively, motion preservation devices such as artificial discs can be used to restore motion and maintain mobility of the involved cervical spinal segments. In the past, researchers have tried to develop finite element models and/or biomechanical tests to compare the biomechanical performances of both anterior cervical plate and cervical artificial disc. However, their numerical models were oversimplified. Therefore, the purpose of this study was to investigate the biomechanical performances of both anterior cervical plate and cervical artificial disc for the treatment of cervical disc disease.
Three-dimensional nonlinear finite element models were developed to investigate the biomechanical performances of C1-T2 multi-level segments with either anterior cervical plate system or cervical artificial disc by using ANSYS Workbench. All numerical models were constrained at the bottom of the T2 vertebra and subjected to a body weight under physiological motions. Disc degeneration was simulated at C5-C6 level. The loading case of flexion, extension, lateral bending and axial rotation were simulated. In addition, in order to evaluate the biomechanical performances of the different surgical techniques, range of motion in cervical spine, intersegmental rotation of cervical spine, and total strain energy of intervertebral discs were calculated.
The numerical results showed that anterior cervical plate system reduced the motion at index level and increased the motion at the adjacent level. This meant that anterior cervical discectomy and fusion surgery had higher risk of developing adjacent segment degeneration. Compared with the anterior cervical discectomy and fusion surgery, cervical artificial disc replacement revealed no adjacent-level instability, but instability was found at the surgical level. The biomechanical performances of the C1-T2 multi-level spine with either anterior cervical plate system or cervical artificial disc could be effectively analyzed using three-dimensional nonlinear finite element analyses and applied to study other problems.

第一章 緒論 1.1 研究背景、動機與目的 1.2 脊椎解剖學之構造 1.2.1 脊椎簡介 1.2.2 頸椎構造 1.2.3 胸椎及腰椎構造 1.2.4 薦椎與尾椎構造 1.3 頸椎退化之手術簡介 1.3.1 ACDF手術簡介 1.3.2 ADR手術簡介 1.4 文獻回顧 1.4.1 Cervical 頸椎有限元素分析 1.4.2 頸椎前方板固定系統與人工椎間盤置換術之文獻回顧 1.5 本文架構 第二章 研究方法 2.1 研究大綱 2.2 有限元素法簡介 2.3 模型結構建立 2.3.1 完整頸椎構造 2.3.2 植入物模型建立 2.3.3 韌帶模型建立 2.4 有限元素分析 2.4.1 材料性質設定 2.4.2 界面接觸條件設定 2.4.3 網格設定 2.4.4 邊界負載條件設定 2.5 收斂性分析 2.6 FEM結果於頸椎活動度計算 2.6.1 整體頸椎活動度計算 2.6.2 頸椎各節活動度計算 2.7 總應變能簡介 第三章 結果 3.1 收斂性分析 3.2 完整頸椎活動度之驗證 3.3 頸椎各椎節間之活動度結果 3.4 頸椎各節椎間盤之總應變能結果 第四章 討論 4.1 收斂性分析 4.2 頸椎模型與先前文獻結果之討論 4.3 頸椎各椎節間活動度之討論 4.4頸椎椎間盤總應變能之討論 4.5 研究限制 第五章 結論與未來展望 5.1 結論 5.2 未來展望 參考文獻 作者簡介

[1] A+醫學百科. http://cht.a-hospital.com
[2] 中壢天晟醫院神經外科. http://www.tcmg.com.tw/神外www/spine2/
[3] Neil R.C., Jeffery D.A., Joshua A.B., Lisa A.F., Nikhil K., Vijay K.G., Neil G., “Biomechanics of a posture-controlling cervical artificial disc: mechanical, in vitro, and finite-element analysis” Neurosurg Focus, Volume 28, June 2010
[4] Ahmad F., Vijay K.G., Ashok B., Steven R.G., Christopher M.B., “Adjacent level effects of bi level disc replacement, bi level fusion and disc replacement plus fusion in cervical spine- a finite element based study” Clinical Biomechanics, Volume 27, p226-233 (2012)
[5] Jirkova L., Horak Z., “Kinematic analyse of mobile type artificial disc replacement” Second International conference on Computing, 2010
[6] 神脈脊椎網. http://spineweb.myweb.hinet.net/basic11.htm
[7] 台灣脊椎中心. http://taiwanspinecenter.com.tw
[8] 疾病網. http://www.jibingnet.com
[9] 纽约 Scoliosis Associates. http://www.scoliosis-chinese.com
[10] Anatomical justice. http://www.anatomicaljustice.com/
[11] Wheeldon J.A., Frank A.P., Stephanie K., Narayan Y., “Experimental flexion/extension data corridors for validation of finite element models of the young, normal cervical spine” Journal of Biomechanics, Volume 39, p375-380 (2004)
[12] Zhang Q.H., Teo E.C., Hong W.N., Lee V.S, “Finite element analysis of moment-rotation relationships for human cervical spine” Journal of Biomechanics, Volume 39, p189-193 (2006)
[13] Palomar A.P., Calvo B., Doblare M.,“An accurate finite element model of the cervical spine under quasi-static loading” Journal of Biomechanics, Volume 41, p523-531 (2008)
[14] Meng Q.J., Zhang L.J., “Study on cervical spine stresses based on three-dimensional finite element method” International Conference on Computational and Information Sciences, p420-423 (2010)
[15] Erbulut D.U., Zafarparandeh I., Lazoglu I., Ozer A.F., “Application of an asymmetric finite element model of the C2-T1cervical spine for evaluating the role of soft tissues in stability” Medical Engineering & Physics (2014)
[16] Ha S.K., “Finite element modeling of multi-level cervical spinal segments (C3–C6) and biomechanical analysis of an elastomer-type prosthetic disc” Medical Engineering & Physics, Volume 28, p534–541 (2006)
[17] Nabhan A., Ahlhelm F., Pitzen T., Steudel W. I., Jung J., Shariat K. , Steimer O. , Bachelier F., Pape D., “Disc replacement using Pro-Disc C versus fusion: a prospective randomised and controlled radiographic and clinical study” Eur Spine J, Volume 16, p423-430 (2007)
[18] Murrey D., Janssen M., Delamarter R., Goldstein J., Zigler J., Tay B., Darden B., “Results of the prospective, randomized, controlled multicenter Food and Drug Administration investigational device exemption study of the ProDisc-C total disc replacement versus anterior discectomy and fusion for the treatment of 1-level symptomatic cervical disc disease” The Spine Journal, Volume 9, p275-286 (2009)
[19] Kim S.W., Paik S.H., Antonio P., Castro F., Baek S.W., Shin D.J., Kwak Y.H., Ju Y.S., “Analysis of factors that may influence range of motion after cervical disc arthroplasty” The Spine Journal, Volume 10, p683-688 (2010)
[20] Hussain M., Nassr A., Natarajan R.N., Howard S.A., Gunnar B.J., “Corpectomy versus discectomy for the treatment of multilevel cervical spine pathology: a finite element model analysis” The Spine Journal, Volume 12, p401-408 (2012)
[21] Daniels A.H., Paller D.J., MS , Feller R.J., Thakur N.A., Alison M., Biercevicz, B.S., Palumbo M.A., Crisco J.J., Madom I.A., “Examination of cervical spine kinematics in complex, multiplanar motions after anterior cervical discectomy and fusion and total disc replacement” International Journal of Spine Surgery, Volume 6, p190-194 (2012)
[22] Hou Y., Liu Y., Yuan W., Wang X., Chen H., Yang L., Zhang Y., “ Cervical kinematics and radiological changes after Discover artificial disc replacement versus fusion” The Spine Journal, (2013)
[23] Synthes Spine, West Chester, PA, USA, Prodisc-C, Surgical technique.
[24] 上海骨科醫院. http://www.shgukeyy.com.cn
[25] Zander T., Rohlmann A., Bergmann G., “ Influence of different artificial disc kinematics on spine biomechanics” Clinical Biomechanics, Volume 24, p135–142 (2009)
[26] 劉啟台力學教室. http://sunrise.hk.edu.tw/~hmliu/1-lct/home.htm
[27] Panjabi M.M., Crisco J.J., Vasavada A., Oda T., Cholewicki J., Nibu K., Shin E., “Mechanical properties of the human cervical spine as shown by three-dimensional load-displacement curves.” Spine 26 (24), 2692–2700.(2001)

QR CODE