簡易檢索 / 詳目顯示

研究生: 徐浩軒
Hao-Hsuan Hsu
論文名稱: 反應式濺鍍摻鉬類鑽碳薄膜應用於H2O2感測之研究
Molybdenum-doped Diamond-like Carbon Thin Films by Reactive Sputter Deposition for H2O2 Sensor
指導教授: 周賢鎧
Shyan-Kay Jou
口試委員: 王丞浩
Chen-Hao Wang
黃柏仁
Bohr-Ran Huang
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 122
中文關鍵詞: 類鑽碳薄膜H2O2感測器摻鉬類鑽碳薄膜電化學
外文關鍵詞: Diamond-Like Carbon thin film, H2O2 sensor, Molybdenum-doped Diamond-like Carbon thin film, Electrochemical
相關次數: 點閱:209下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報


摘要 I ABSTRACT III 誌謝 V 目錄 VI 圖目錄 IX 表目錄 XV 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 第二章 文獻回顧 4 2.1 類鑽石膜之結構與性質4 2.2 類鑽碳膜成長機制6 2.2.1 a-C之成長機制6 2.2.2 a-C:H之成長機制7 2.2.3 Me-DLC薄膜(Metal-containing diamond-like carbon film)9 2.2.4 含鉬類鑽碳薄膜10 2.3 類鑽石薄膜製備之方法10 2.3.1 離子束沉積法(Ion beam)11 2.3.2 濺鍍法(Sputtering) 11 2.3.3 脈衝雷射沉積法(pulsed laser deposition)11 2.3.4 電漿輔助化學氣相沉積法(plasma enhanced chemical vapor deposition)12 2.3.5 陰極電弧放電法(cathodic arc)12 2.4 電化學簡介13 2.4.1 循環伏安法14 2.4.2 安培法17 2.4.3 電化學反應系統18 2.5 H2O2感測器18 第三章 研究方法與實驗步驟22 3.1 實驗藥品及材料22 3.2 實驗流程24 3.2.1 基板預處理 25 3.2.2 成長摻鉬類鑽石碳薄膜25 3.2.3製作H2O2感測器26 3.2.4電化學量測27 3.3 實驗及量測設備28 3.3.1 反應式濺鍍系統(Reactive sputter system)28 3.3.2 場發射掃描式電子顯微鏡(Field Emission Scanning Electron Microscopy,FESEM)29 3.3.3顯微拉曼光譜儀(Raman spectrometer)30 3.3.4 四點探針(Four point probe)32 3.3.5 X射線光電子能譜儀(X-ray Photoelectron Spectrum,XPS)33 3.3.6 X-ray繞射儀 (X-ray diffractometer,XRD)34 3.3.7電化學量測系統(Electrochemical analyzer)35 第四章 結果與討論37 4.1 不同乙炔濃度之摻鉬類鑽石碳薄膜結構與特性分析37 4.1.1 不同乙炔濃度之摻鉬類鑽石碳薄膜表面形貌38 4.1.2能量散射X射線譜(Energy-dispersive X-ray spectroscopy,EDX)元素分析40 4.1.3拉曼光譜品質分析(Raman spectroscopy)42 4.1.4 X射線光電子能譜儀(X-ray Photoelectron Spectrum,XPS)分析46 4.1.5 X-ray繞射儀 (X-ray diffractometer,XRD)分析 54 4.1.6乙炔濃度對摻鉬類鑽石碳薄膜沉積速率的影響56 4.1.7乙炔與氬氣流量對摻鉬類鑽石碳薄膜導電率的影響58 4.2 不同基板偏壓之摻鉬類鑽石碳薄膜結構與特性分析60 4.2.1 不同基板偏壓之摻鉬類鑽石碳薄膜表面形貌61 4.2.2能量散射X射線譜(Energy-dispersive X-ray spectroscopy,EDX)元素分析63 4.2.3拉曼光譜品質分析(Raman spectroscopy)66 4.2.4 X射線光電子能譜儀(X-ray Photoelectron Spectrum,XPS)分析70 4.2.5 X-ray繞射儀 (X-ray diffractometer,XRD)分析77 4.2.6基板偏壓對摻鉬類鑽石碳薄膜沉積速率的影響78 4.2.7基板偏壓對摻鉬類鑽石碳薄膜導電率的影響81 4.3 電化學量測與分析83 4.3.1 不同掃描速率電化學分析83 4.3.2 不同H2O2濃度之循環伏安分析86 4.3.3 安培法測定H2O2之濃度分析87 4.3.4 保存測試93 第五章 結論95 第六章 未來展望97 參考文獻98 附錄103

[1]K. Bewilogua and D. Hofmann, "History of diamond-like carbon films — From first experiments to worldwide applications," Surface and Coatings Technology, vol. 242, pp. 214-225, 2014.
[2]K. Bewilogua, C. Cooper, C. Specht, J. Schröder, R. Wittorf, and M. Grischke, "Effect of target material on deposition and properties of metal-containing DLC (Me-DLC) coatings," Surface and Coatings Technology, vol. 127, no. 2-3, pp. 223-231, 2000.
[3]余樹貞, "晶體之結構與性質," 台北台灣: 渤海堂文化公司, 1993.
[4]B. Li, L.-H. Liu, H.-Y. Song, Z.-P. Deng, L.-H. Huo, and S. Gao, "Carbon-doping mesoporous β-Mo2C aggregates for nanomolar electrochemical detection of hydrogen peroxide," ACS Applied Nano Materials, vol. 3, no. 8, pp. 7499-7507, 2020.
[5]J. Robertson, "Diamond-like amorphous carbon," Materials Science and Engineering: R: Reports, vol. 37, no. 4-6, pp. 129-281, 2002.
[6]C. Donnet and A. Erdemir, Tribology of Diamond-Like Carbon Films: Fundamentals and Applications. Springer Science & Business Media, 2007.
[7]E. Spencer, P. Schmidt, D. Joy, and F. Sansalone, "Ion‐beam‐deposited polycrystalline diamondlike films," Applied Physics Letters, vol. 29, no. 2, pp. 118-120, 1976.
[8]Y. Lifshitz, S. Kasi, J. Rabalais, and W. Eckstein, "Subplantation model for film growth from hyperthermal species," Physical Review B, vol. 41, no. 15, p. 10468, 1990.
[9]J. J. Cuomo, D. L. Pappas, J. Bruley, J. P. Doyle, and K. L. Saenger, "Vapor deposition processes for amorphous carbon films with sp3 fractions approaching diamond," Journal of Applied Physics, vol. 70, no. 3, pp. 1706-1711, 1991.
[10]C. Weissmantel, "Ion-based growth of special films: Techniques and mechanisms," Thin Solid Films, vol. 92, no. 1-2, pp. 55-63, 1982.
[11]W. Möller, "Modelling and computer simulation of ion-beam-and plasma-assisted film growth," Thin Solid Films, vol. 228, no. 1-2, pp. 319-325, 1993.
[12]D. McKenzie, D. Muller, and B. Pailthorpe, "Compressive-stress-induced formation of thin-film tetrahedral amorphous carbon," Physical Review Letters, vol. 67, no. 6, p. 773, 1991.
[13]J. Robertson, "Diamond-like carbon," Pure and Applied Chemistry, vol. 66, no. 9, pp. 1789-1796, 1994.
[14]J. Robertson, "The deposition mechanism of diamond-like aC and aC: H," Diamond and Related Materials, vol. 3, no. 4-6, pp. 361-368, 1994.
[15]J. Robertson, "Deposition mechanisms for promoting sp3 bonding in diamond-like carbon," Diamond and Related Materials, vol. 2, no. 5-7, pp. 984-989, 1993.
[16]W. Möller, "Plasma and surface modeling of the deposition of hydrogenated carbon films from low-pressure methane plasmas," Applied Physics A, vol. 56, no. 6, pp. 527-546, 1993.
[17]J. Robertson, "Hard amorphous (diamond-like) carbons," Progress in Solid State Chemistry, vol. 21, no. 4, pp. 199-333, 1991.
[18]R. Locher, C. Wild, and P. Koidl, "Direct ion-beam deposition of amorphous hydrogenated carbon films," Surface and Coatings Technology, vol. 47, no. 1-3, pp. 426-432, 1991.
[19]K. Bewilogua and D. Hofmann, "History of diamond-like carbon films—from first experiments to worldwide applications," Surface and Coatings Technology, vol. 242, pp. 214-225, 2014.
[20]J. Lu and U. Jansson, "Chemical vapour deposition of molybdenum carbides: aspects of nanocrystallinity," Thin Solid Films, vol. 396, no. 1-2, pp. 53-61, 2001.
[21]J. Newman and K. E. Thomas-Alyea, Electrochemical Systems. John Wiley & Sons, 2012.
[22]胡啟章, 電化學原理與方法. 五南圖書出版股份有限公司, 2002.
[23]J. Wang, "Towards genoelectronics: electrochemical biosensing of DNA hybridization," Chemistry–A European Journal, vol. 5, no. 6, pp. 1681-1685, 1999.
[24]J. Tian,Q. Liu, C.Ge, Z.Xing, Abdullah M. Asiri, Abdulrahman O. Al-Youbi, X.Sun "Ultrathin graphitic carbon nitride nanosheets: a low-cost, green, and highly efficient electrocatalyst toward the reduction of hydrogen peroxide and its glucose biosensing application," Nanoscale, vol. 5, no. 19, pp. 8921-8924, 2013.
[25]A. Bard, L. Faulkner, J. Leddy, and C. Zoski, "Electrochemical Methods: Fundamentals and Applications, vol 2 John Wiley & Sons," New York, NY, 1980.
[26]W. Chen, S. Cai, Q.-Q. Ren, W. Wen, and Y.-D. Zhao, "Recent advances in electrochemical sensing for hydrogen peroxide: a review," Analyst, vol. 137, no. 1, pp. 49-58, 2012.
[27]S. Chen, R. Yuan, Y. Chai, and F. Hu, "Electrochemical sensing of hydrogen peroxide using metal nanoparticles: a review," Microchimica Acta, vol. 180, no. 1, pp. 15-32, 2013.
[28]D. Depla and S. Mahieu, Reactive Sputter Deposition. Springer, 2008.
[29]S. K. Sharma, D. S. Verma, L. U. Khan, S. Kumar, and S. B. Khan, Handbook of Materials Characterization. Springer, 2018.
[30]Z. Xu et al., "Topic review: application of Raman spectroscopy characterization in micro/nano-machining," Micromachines, vol. 9, no. 7, p. 361, 2018.
[31]A. Smekal, "Zur quantentheorie der dispersion," Naturwissenschaften, vol. 11, no. 43, pp. 873-875, 1923.
[32]C. V. Raman and K. S. Krishnan, "A new type of secondary radiation," Nature, vol. 121, no. 3048, pp. 501-502, 1928.
[33]D. C. Jiles, Introduction to the Electronic Properties of Materials. CRC Press, 2001.
[34]J. F. Watts and J. Wolstenholme, An Introduction to Surface Analysis by XPS and AES. John Wiley & Sons, 2019.
[35]F. T. L. Muniz, M. A. R. Miranda, C. Morilla dos Santos, and J. M. Sasaki, "The Scherrer equation and the dynamical theory of X-ray diffraction," Acta Crystallographica Section A: Foundations and Advances, vol. 72, no. 3, pp. 385-390, 2016.
[36]D. B. Padmanaban, L. Mohan, P. Giri, P. Bera, C. Anandan, and H. C. Barshilia, "Effect of Molybdenum Content on Mechanical and Tribological Properties of Diamond-Like Carbon Coatings over Titanium β-21S Alloy," C, vol. 7, no. 1, p. 1, 2021.
[37]X. Tang, H. Wang, L. Feng, L. Shao, and C. Zou, "Mo doped DLC nanocomposite coatings with improved mechanical and blood compatibility properties," Applied Surface Science, vol. 311, pp. 758-762, 2014.
[38] D. Haddock, T. Parker, C. Spindloe, and M. Tolley, "Characterisation of Diamond-Like Carbon (DLC) laser targets by Raman spectroscopy," in Journal of Physics: Conference Series, 2016, vol. 713, no. 1, p. 012007.
[39]L. Ji, H. Li, F. Zhao, J. Chen, and H. Zhou, "Microstructure and mechanical properties of Mo/DLC nanocomposite films," Diamond and Related Materials, vol. 17, no. 11, pp. 1949-1954, 2008.
[40]J. C. Ding, H. Mei, S. Jeong, J. Zheng, Q. M. Wang, and K. H. Kim, "Effect of bias voltage on the microstructure and properties of Nb-DLC films prepared by a hybrid sputtering system," Journal of Alloys and Compounds, vol. 861, p. 158505, 2021.
[41]P. Wang, X. Wang, Y. Chen, G. Zhang, W. Liu, and J. Zhang, "The effect of applied negative bias voltage on the structure of Ti-doped aC: H films deposited by FCVA," Applied Surface Science, vol. 253, no. 7, pp. 3722-3726, 2007.
[42]A. Voevodin, M. Capano, S. Laube, M. Donley, and J. Zabinski, "Design of a Ti/TiC/DLC functionally gradient coating based on studies of structural transitions in Ti–C thin films," Thin Solid Films, vol. 298, no. 1-2, pp. 107-115, 1997.
[43]H. Li, T. Xu, J. Chen, H. Zhou, and H. Liu, "Preparation and characterization of hydrogenated diamond-like carbon films in a dual DC-RF plasma system," Journal of Physics D: Applied Physics, vol. 36, no. 24, p. 3183, 2003.
[44]J. Shalini, K. J. Sankaran, C.-Y. Lee, N.-H. Tai, and I.-N. Lin, "An amperometric urea bisosensor based on covalent immobilization of urease on N2 incorporated diamond nanowire electrode," Biosensors and Bioelectronics, vol. 56, pp. 64-70, 2014.
[45]M. Wu, Y. Hong, X. Zang, and X. Dong, "ZIF‐67 Derived Co3O4/rGO Electrodes for Electrochemical Detection of H2O2 with High Sensitivity and Selectivity," ChemistrySelect, vol. 1, no. 18, pp. 5727-5732, 2016.
[46]P. Kannan, T. Maiyalagan, A. Pandikumar, L. Guo, P. Veerakumar, and P. Rameshkumar, "Highly sensitive enzyme-free amperometric sensing of hydrogen peroxide in real samples based on Co3O4 nanocolumn structures," Analytical Methods, vol. 11, no. 17, pp. 2292-2302, 2019.
[47]P. Gao and D. Liu, "Facile synthesis of copper oxide nanostructures and their application in non-enzymatic hydrogen peroxide sensing," Sensors and Actuators B: Chemical, vol. 208, pp. 346-354, 2015.
[48]Z. Zhao et al., "Ag functionalized molybdenum disulfide hybrid nanostructures for selective and sensitive amperometric hydrogen peroxide detection," International Journal of Electrochemical Science, vol. 12, no. 9, pp. 8761-8776, 2017.
[49] M. Shamsipur, M. Najafi, and M.-R. M. Hosseini, "Highly improved electrooxidation of glucose at a nickel (II) oxide/multi-walled carbon nanotube modified glassy carbon electrode," Bioelectrochemistry, vol. 77, no. 2, pp. 120-124, 2010.
[50]Y. Zhang, F. Xu, Y. Sun, Y. Shi, Z. Wen, and Z. Li, "Assembly of Ni(OH)2 nanoplates on reduced graphene oxide: a two dimensional nanocomposite for enzyme-free glucose sensing," Journal of Materials Chemistry, vol. 21, no. 42, pp. 16949-16954, 2011.
[51]J. Li et al., "Porous molybdenum carbide nanostructured catalyst toward highly sensitive biomimetic sensing of H2O2," Electroanalysis, vol. 32, no. 6, pp. 1243-1250, 2020.

無法下載圖示 全文公開日期 2026/09/29 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE