簡易檢索 / 詳目顯示

研究生: 李昭穎
Chao-ying Lee
論文名稱: 基於三軸加速計的人體姿態辨識方法之研究
A Study of Posture Recognition Based on the 3-axis Accelerometer
指導教授: 林淵翔
Yuan-Hsiang Lin
口試委員: 周迺寬
Nai-Kuan Chou
吳晉賢
Chin-Hsien Wu
林昌鴻
Chang Hong Lin
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 47
中文關鍵詞: 三軸加速度計穿戴式感測器姿態辨識
外文關鍵詞: accelerometer, wearable sensor, posture recognition
相關次數: 點閱:478下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文開發了一套可即時辨識動作姿態的演算法並將演算法放入一可穿戴式裝置內執行。使用的裝置以MSP430單晶片為核心,三軸加速度計ADXL345為感測元件,動作姿態辨識結果經由藍牙4.0傳送到電腦端的接收器。本論文開發的動作姿態判斷演算法可以辨識躺、趴、站、走和跑五種動作狀態。在人體測試實驗中,共有18人參與實驗,實驗結果顯示此方法可即時判斷出各種動作姿態並具有相當高的準確度。


    In this study, we developed a real time posture recognition algorithm which is embedded on a wearable device. The device contains a MSP430 microprocessor and a tri-axial accelerometer ADXL345. The result of the recognition, contains lie downward, lie upward, standing, walking, running, is transmitted to PC via Bluetooth 4.0. There are 18 subjects participate to the experiment. The results demonstrate the high accuracy of the real time posture recognition algorithm.

    中文摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VI 表目錄 VIII 第一章 緒論 1 1.1 動機與目的 1 1.2 文獻探討 3 1.3 相關論文比較 5 1.4 論文架構 8 第二章 研究背景 9 2.1 加速度感測器 9 2.2 微控制器 10 2.3 藍牙模組 10 2.4 Signal Vector Magnitude (SVM) 11 2.5 Differential Signal Vector Magnitude(DSVM) 12 第三章 研究方法 13 3.1 系統架構 13 3.2 硬體架構 14 3.3 軟體架構 15 3.4 訊號處理 18 3.4.1 單位轉換 19 3.4.2 濾波處理 19 3.4.3 Differential Angle Magnitude (DAM) 20 3.5 Feature Extraction 21 3.5.1 動作特徵 21 3.5.2 動作轉換特徵 24 3.5.3 姿態判斷演算法 31 3.5.4 運動量DSVM閥值 33 3.5.5 角度量DAM閥值 34 第四章 實驗方法與結果 35 4.1 實驗方法 35 4.2 實驗結果 37 第五章 討論 39 第六章 結論與未來展望 43 第七章 參考文獻 44

    [1] 簡郁芬, "淺談老年症候群," 2012.
    [2] 行政院 人力規劃處, "中華民國2012年至2060年人口推計," 101.
    [3] L. D. B. Thorbahn and R. A. Newton, "Use of the Berg Balance Test to predict falls in elderly persons," PHYSICAL THERAPY, vol. 76, pp. 576-583, 1996.
    [4] D.-U. Jeong, S.-J. Kim, and W.-Y. Chung, "Classification of Posture and Movement Using a 3-axis Accelerometer," in CONVERGENCE INFORMATION TECHNOLOGY Gyeongju, 2007, pp. 837-844.
    [5] A. Weiss, T. Herman, M. Plotnik, M. Brozgol, I. Maidan, N. Giladi, T. Gurevich, and J. M. Hausdorff, "Can an accelerometer enhance the utility of the Timed Up & Go Test when evaluating patients with Parkinson's disease?," MEDICAL ENGINEERING AND PHYSICS, vol. 32, pp. 119-125, 2010.
    [6] S. T. Moore, H. G. MacDougall, J.-M. Gracies, H. S. Cohen, and W. G. Ondo, "Long-term monitoring of gait in Parkinson's disease.," GAIT AND POSTURE, vol. 26, pp. 200-207, 2007.
    [7] H. Ying, C. Silex, A. Schnitzer, S. Leonhardt, and M. Schiek, "Automatic Step Detection in the Accelerometer Signal," WEARABLE AND IMPLANTABLE BODY SENSOR NETWORKS, vol. 13, pp. 80-85, 2007.
    [8] L. Palmerini, "Feature Selection for Accelerometer-Based Posture Analysis in Parkinson's Disease," IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, vol. 15, pp. 481-490, 2011.
    [9] S. b. Senioren, "Gefahren erkennen und vermeiden," 2013.
    [10] M. J. Mathie, B. G. Celler, D. N. H. Lovell, and A. C. F. Coster, "Classification of basic daily movements using a triaxial accelerometer," Medical and Biological Engineering and Computing, vol. 42, pp. 679-687, 2004.
    [11] D. M. Karantonis, M. R. Narayanan, M. Mathie, N. H. Lovell, and B. G. Celler, "Implementation of a Real-Time Human Movement Classifier Using a Triaxial Accelerometer for Ambulatory Monitoring," INFORMATION TECHNOLOGY IN BIOMEDICINE, vol. 10, p. 12-14, Jan. 2006.
    [12] D. M. Karantonis, M. R. Narayanan, M. Mathie, N. H. Lovell, and B. G. Celler, "Implementation of a Real-Time Human Movement Classifier Using a Triaxial Accelerometer for Ambulatory Monitoring," INFORMATION TECHNOLOGY IN BIOMEDICINE, vol. 10, pp. 156-167, Jan. 2006.
    [13] D.-U. Jeong, K.-H. Do, and W.-Y. Chung, "Implementation of the Wireless Activity Monitoring System Using Accelerometer and Fuzzy Classifier," INTERNATIONAL JOURNAL OF SYSTEMS FOR LOGISTICS AND MANAGEMENT, vol. 3, pp. 115-120, 2008.
    [14] L. Mo, S. Liu, R. X. Gao, D. John, J. W. Staudenmayer, and P. S. Freedson, "Wireless Design of a Multisensor System for Physical Activity Monitoring," IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, vol. 59, pp. 3230-3237, 2012.
    [15] S.-Y. Chiang, Y.-C. Kan, Y.-C. Tu, and H.-C. Lin, "Activity Recognition by Fuzzy Logic System in Wireless Sensor Network for Physical Therapy," INTELLIGENT DECISION TECHNOLOGIES SMART INNOVATION, SYSTEMS AND TECHNOLOGIES, vol. 16, pp. 191-200, 2012.
    [16] J. Cheng, X. Chen, and M. Shen, "A Framework for Daily Activity Monitoring and Fall Detection Based on Surface Electromyography and Accelerometer Signals," IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, vol. 17, pp. 38-45, 2013.
    [17] J. R. Kwapisz, G. M. Weiss, and S. A. Moore, "Activity recognition using cell phone accelerometers," ACM SIGKDD Explorations Newsletter, vol. 12, pp. 74-82, 2010.
    [18] O. Yurur, C.-H. Liu, and W. Moreno, "Unsupervised posture detection by smartphone accelerometer," ELETRONICS LETTERS, vol. 49, pp. 1-2, 2013.
    [19] I. Pernek, G. Stiglic, and P. Kokol, "How Hard Am I Training? Using Smart Phones to Estimate Sport Activity Intensity," in DISTRIBUTED COMPUTING SYSTEMS WORKSHOPS Macau, 2012, pp. 65-68.
    [20] S. Yazaki and T. Matsunaga, "A Proposal of Abnormal Condition Detection System for Elderly People Using Wireless Wearable Biosensor," in SICE ANNUAL CONFERENCE, 2008.
    [21] D. Curone, G. M. Bertolotti, A. Cristiani, E. L. Secco, and G. Magenes, "A real-time and self-calibrating algorithm based on triaxial accelerometer signals for the detection of human posture and activity," IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, vol. 14, pp. 1098-1105, 2010.
    [22] M. J. Mathie, B. G. Celler, D. N. H. Lovell, and A. C. F. Coster, "Classification of basic daily movements using a triaxial accelerometer," MEDICAL AND BIOLOGICAL ENGINNERING AND COMPUTING, vol. 42, pp. 679-687, 2004.
    [23] M.-h. Lee, J. Kim, K. Kim, I. Lee, S. H. Jee, and S. K. Yoo, "Physical Activity Recognition Using a Single Tri-Axis Accelerometer," in PROCEEDINGS OF THE WORLD CONGRESS ON EMGINEERING AND COMPUTER SCIENCE. vol. 1 San Francisco, USA, 2009.
    [24] A. M. Khan, Y.-K. Lee, S. Y. Lee, and T.-S. Kim, "A Triaxial Accelerometer-Based Physical-Activity Recognition via Augmented-Signal Features and a Hierarchical Recognizer," INFORMATION TECHNOLOGY IN BIOMEDICINE, vol. 14, pp. 1166-1172, Sept. 2010.
    [25] A. Devices, "ADXL345: 3-AXIS, ±2 g/±4 g/±8 g/±16 g DIGITAL ACCELEROMETER."
    [26] Texas Instruments, "CC2541 (ACTIVE) 2.4-GHz BluetoothR low energy and Proprietary System-on-Chip."
    [27] L. Bao and S. S. Intille, "Activity Recognition from User-Annotated Acceleration Data," PERVASIVE COMPUTING LECTURE NOTES IN COMPUTER SCIENCE, vol. 3001, pp. 1-17, 2004.
    [28] J. Baek and B.-J. Yun, "Posture Monitoring System for Context Awareness in Mobile Computing," IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, vol. 59, 2010.
    [29] J. Parkka, M. Ermes, P. Korpipaa, J. Mantyjarvi, J. Peltola, and I. Korhonen, "Activity classification using realistic data from wearable sensors," INFORMATION TECHNOLOGY IN BIOMEDICINE, vol. 10, pp. 119 - 128, Jan. 2006.

    QR CODE