簡易檢索 / 詳目顯示

研究生: 紀秉承
Bing-Cheng Ji
論文名稱: 密度泛函理論計算於一氧化碳氧化反應及二氧化碳、甲烷重組反應在二氧化銥(110)表面之研究
Density-Functional Theory Study of CO Oxidation and CO2 Reforming with Methane on IrO2(110) Surface
指導教授: 江志強
Jyh-Chiang Jiang
口試委員: 郭哲來
Jer-Lai Kuo
林昇佃
Shawn-Dian Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 109
中文關鍵詞: 密度泛函理論二氧化銥一氧化碳氧化二氧化碳重組
外文關鍵詞: DFT, IrO2, CO oxidation, CO2 reforming
相關次數: 點閱:323下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,由於一氧化碳中毒及溫室效應所導致全球暖化的問題,使得一氧化碳(CO)和二氧化碳(CO2)的轉化反應受到了廣泛討論。過去的研究已報導,這些反應可在貴金屬表面上發生進行低溫催化反應。另外據文獻報導,二氧化銥是個對甲烷活化和OER反應具有良好催化活性的催化劑。因此,本文採用密度泛函理論(DFT)針對一氧化碳氧化和二氧化碳重組反應於二氧化銥(110)表面上之反應機構進行探討。
    在一氧化碳氧化方面,我們研究了三種不同的機制:朗謬-辛歇伍德(L-H)、埃利-里迪爾(E-R)和馬爾斯-范克里弗倫(MvK)機制。在L-H機制中,我們發現在有或無氧氣直接分解的條件下,反應之速率決定步驟分別是C-O偶合反應以及二氧化碳脫附反應。在E-R機制中,我們計算發現各反應步驟的活化很小,二氧化碳和碳酸都是可以形成的產物。然而,因為CO2在二氧化銥(110)表面上的脫附能很大,因而其脫附反應在E-R機制中仍然是困難的,E-R機制中之速率決定步驟也是二氧化碳脫附反應。此外,因為MvK機制中的反應活化能皆大於L-H或E-R機制中的活化能,故MvK機制在二氧化銥(110)表面上進行的可能性比較小。最後,我們通過分子動力學模擬觀察到當溫度增加到400 K後,二氧化碳可以脫離表面,這個結果顯示了CO2與二氧化銥(110)表面具有很強的結合能力。所以,這個結果也顯示了一氧化碳氧化的反應性乃受制於二氧化銥(110)表面上二氧化碳的脫附反應。
    在二氧化碳重組反應中,二氧化碳和甲烷在二氧化銥(110)表面上具有足夠大的吸附能,因此它們無法脫附,並能夠彼此反應。經過計算一系列活化能低於0.80 eV的轉化反應後,我們發現在二氧化銥(110)表面上會形成一氧化碳和甲醛共吸附,但由於一氧化碳和甲醛的脫附能很大,它們只能在高溫下才能脫離表面。故此我們亦考慮了一氧化碳和甲醛的碳-碳耦合反應並發現他們的耦合活化能很小。同樣在經過一系列活化能均低於1.00eV的轉化反應之後,一氧化碳和甲醛會在二氧化銥(110)表面上產生乙烯酮。乙烯酮在二氧化銥(110)上的脫附能皆小於一氧化碳和甲醛,表示乙烯酮能夠在相對低溫下進行脫附。因此乙烯酮的形成也可能是在二氧化碳重組反應中另一種途徑。最後歸納利用甲烷進行二氧化碳之重組反應中,有兩種可能的高價值化學產品產生:甲醛或乙烯酮。我們的結果也顯示前者可能在較高溫度下形成,而後者可以在較低溫度下獲得。我們預測二氧化銥(110)表面將成為溫室氣體重整生產高價值化學品的優秀新型催化劑。


    Recently, the conversion of carbon monoxide (CO) and carbon dioxide (CO2) has been extensively discussed due to their influence for human’s lives and the environment, such as CO poisoning as well as the global warming issues from the greenhouse effect. Several studies have been reported that these reactions occurred on the surface of noble metals have high catalytic activity at low temperatures. Besides, iridium oxide has been reported to possess good catalytic activity towards methane activation and OER. Thus, in this thesis, density functional theory (DFT) is used to calculate the reaction mechanism of CO oxidation and CO2 reforming on IrO2 (110) surface.
    In terms of CO oxidation, we investigated the CO oxidation via three different mechanisms: Langmuir-Hinshelwood (LH), Eley-Rideal (ER) and Mars-Van Krevelen (MvK) mechanisms. In the L-H mechanism, we found that the rate-determining steps are C-O coupling and CO2 desorption in the condition with or without O2 direct decomposition, respectively. In the E-R mechanism, both CO2 and CO3 formation are possible routes due to small reaction barriers. However, the CO2 desorption is still difficult due to its large desorption energy on IrO2 (110) surface so that the rate-determined step is CO2 desorption in E-R mechanism. In addition, the reaction barriers in MvK mechanism are larger than that in either L-H or E-R mechanism, and thus the MvK is a less possible mechanism on IrO2(110) surface. Furthermore, by using the MD simulation, we observed that CO2 can desorb after increasing to 400 K, indicating that CO2 has a strong binding ability to IrO2(110) surface. Therefore, this result also suggests that the reactivity of CO oxidation is controlled by the desorption of CO2 on IrO2(110) surface.
    In CO2 reforming reaction, CO2 and CH4 have large enough adsorption energy on IrO2 (110) surface to avoid the desorption of them. After a series of conversion reaction steps with energy barriers being lower than 0.80 eV, we found that it can form the CO and CH2O on IrO2 (110). However, the desorption energies of CO and CH2O are large which can only desorb at high temperature. Hence, we also consider the C-C coupling of CO and CH2O and found the coupling barrier is small. After a series of conversion reaction steps with energy barriers being lower than 1.00 eV, it can produce the ethenone on IrO2 (110) surface. The desorption energy of ethenone is smaller than that of CO and CH2O on IrO2 (110) surface. Therefore, the ethenone formation is another possible pathway for CO2 reforming reaction. In the reaction of CO2 reforming by CH4, there are two possible high-value chemicals products: formaldehyde or ethenone. Our results suggest that the former might form at a higher temperature while the latter could obtain at the lower one. We predict that IrO2 (110) surface will be an excellent novel catalyst for the greenhouse gas reforming to produce high-value chemicals.

    Chapter 1. Introduction 1 1.1 Carbon monoxide (CO) 1 1.2 Carbon dioxide (CO2) 2 1.3 Natural gas 3 1.4 Iridium Dioxide (IrO2) 6 Chapter 2. Computational Details 8 2.1 Method 8 2.2 Surface model 9 Chapter 3. CO Oxidation on IrO2 (110) Surface 11 3.1 Introduction 11 3.1.1 CO oxidation 11 3.1.2 The present work 13 3.2 CO and O2 adsorption on IrO2 (110) surface 14 3.3 Reaction mechanisms of the first CO oxidation 22 3.3.1 L-H mechanism 22 3.3.2 E-R mechanism 25 3.3.3 MVK 29 3.4 Reaction mechanisms of the second CO oxidation 31 3.4.1 L-H mechanism 33 3.4.2 E-R mechanism 34 3.5 MD simulation 37 3.6 Conclusion 39 Chapter 4. CO2 Reforming with Methane on IrO2 (110) Surface 42 4.1 Introduction 42 4.1.1 Methane (CH4) conversion 42 4.1.2 CO2 reforming (Dry reforming) 43 4.1.3 The present work 45 4.2 CH4 and CO2 adsorption on IrO2 (110) surface 46 4.3 Reaction mechanism of CO2 reforming by CH4 on IrO2(110) surface 52 4.3.1 CO2 dissociation and CH4 activation 52 4.3.2 CHX dehydrogenation and C-O coupling 60 4.4 CO activity by CH2O coupling 67 4.4.1 C-C coupling and ethenone (CH2CO) formation 67 4.4.2 H2O formation and decomposition 76 4.5 Conclusion 79 Chapter 5. Summary 83 Reference ……………………………………………………………..86 Appendix ……………………………………………………………..94

    [1] J. T. Chapman, L. E. Otterbein, J. A. Elias and A. M. K. Choi, "Carbon monoxide attenuates aeroallergen-induced inflammation in mice," American Journal of Physiology Lung Cellular and Molecular Physiology, vol. 281, pp. 209-216, 2001.
    [2] R. Motterlini and L. E. Otterbein, "The therapeutic potential of carbon monoxide," Nature Review Drug Discovery, vol. 9, pp. 728-743, 2010.
    [3] L. E. Otterbein, F. H. Bach, J. Alam, M. Soares, H. T. Lu, M. Wysk, R. J. Davis, R. A. Flavell and A. M. Choi, "Carbon monoxide has anti-inflammatory effects involving the mitogen-activated protein kinase pathway," Nature Medicine, vol. 6, pp. 422-428, 2000.
    [4] P. M. Cox, R. A. Betts, C. Jones, S. A. Spall and I. J. Totterdell, "Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model," Nature, vol. 408, pp. 184-187, 2000.
    [5] H. W. Hsu, W. C. Chen, M. H. Chang and Y. C. Chou, "CO2 Capture Technology with Calcium Looping," Journal of Taiwan Energy, vol. 1, pp. 145-155, 2014.
    [6] F. Studt, I. Sharafutdinov, F. Abild-Pedersen, C. F. Elkjær, J. S. Hummelshøj, S. Dah, I. Chorkendorff and J. K. Nørskov, "Discovery of a Ni-Ga catalyst for carbon dioxide reduction to methanol," Nature Chemistry, vol. 6, pp. 320-324, 2014.
    [7] W. H. Wang, Y. Himeda, J. T. Muckerman, G. F. Manbeck and E. Fujita, "CO2 Hydrogenation to Formate and Methanol as an Alternative to Photo- and Electrochemical CO2 Reduction," Chemical Reviews, vol. 115, pp. 12936-12973, 2015.
    [8] Y. Tamaki, T. Morimoto, K. Koike and O. Ishitani, "Photocatalytic CO2 reduction with high turnover frequency and selectivity of formic acid formation using Ru(II) multinuclear complexes," PNAS, vol. 109, pp. 15673-15678, 2012.
    [9] R. Kortlever, C. Balemans, Y. Kwon and M. T. Koper, "Electrochemical CO2 reduction to formic acid on a Pd-based formic acid oxidation catalyst," Catalysis Today, vol. 244, pp. 58-62, 2015.
    [10] L. F. Mattheiss, Phys. Rev. B, vol. 13, pp. 2433-2450, 1976.
    [11] Y. Lee, J. Suntivich, K. J. May, E. E. Perry and S.-H. Yang , "Synthesis and Activities of Rutile IrO2 and RuO2 Nanoparticles for Oxygen Evolution in Acid and Alkaline Solutions," Journal of Physical Chemistry Letters, vol. 3, pp. 399-404, 2012.
    [12] K. A. Stoerzinger, L. Qiao, M. D. Biegalski and S.-H. Yang, "Orientation-Dependent Oxygen Evolution Activities of Rutile IrO2 and RuO2," Journal of Physical Chemistry Letters, vol. 5, p. 1636−1641, 2014.
    [13] W. Sun, Y. Song, X. Q. Gong, L. m. Caoa and J. Yang, "An efficiently tuned d-orbital occupation of IrO2 by doping with Cu for enhancing the oxygen evolution reaction activity," Chemical Science, vol. 6, pp. 4993-4999, 2015.
    [14] C. C. Shan, D. S. Tsai, Y. S. Huang, S. H. Jian and C. L. Cheng, "Pt−Ir−IrO2NT Thin-Wall Electrocatalysts Derived from IrO2 Nanotubes and Their Catalytic Activities in Methanol Oxidation," Chem. Mater., vol. 19, pp. 424-431, 2007.
    [15] H. Wang, J. Zheng, F. Peng and H. Yu, "Pt/IrO2/CNT anode catalyst with high performance for direct methanol fuel cells," Catalysis Communications, vol. 33, pp. 34-37, 2013.
    [16] H. A. Hansen, I. C. Man, F. Studt, F. Abild-Pedersen, T. Bligaardac and J. Rossmeisl, "Electrochemical chlorine evolution at rutile oxide (110) surfaces," Physical Chemistry Chemical Physics, vol. 12, p. 283–290, 2010.
    [17] M. Moser, C. Mondelli, A. P. Amrute, A. Tazawa, D. Teschner, M. E. Schuster, A. Klein-Hoffman, N. Lopez, T. Schmidt and J. Perez-Ramírez, "HCl Oxidation on IrO2 Based Catalysts: From Fundamentals to ScaleUp," ACS Catalysis, vol. 3, p. 2813−2822, 2013.
    [18] K. Nishio, Y. Watanabe and T. Tsuchiya, "Preparation and properties of electrochromic iridium oxide thin film by sol-gel process," Thin Solid Films, vol. 350, pp. 96-100, 1999.
    [19] R. K. Kawar, P. S. Chigare and P. S. Patil, "Substrate temperature dependent structural, optical and electrical properties of spray deposited iridium oxide thin films," Applied Surface Science, vol. 206, pp. 90-101, 2003.
    [20] J.-C. Lue and S. Chao, "Fabrication and characterization of IrO2-based microsensors for fast detection of carbon dioxide," Japanese Journal of Applied Physics, vol. 36, pp. 2292-2297, 1997.
    [21] D. O. Wipf, F. Ge, T. W. Spaine and J. E. Baur, "Microscopic Measurement of pH with Iridium Oxide Microelectrodes," Analytical Chemistry, vol. 72, pp. 4921-4927, 2000.
    [22] P. J. Kinlen, J. E. Heider and D. E. Hubbard, "A solid-state pH sensor based on a Nafion-coated iridium oxide indicator electrode and a polymer-based silver chloride reference electrode," Sensors and Actuators B: Chemical, vol. 22, pp. 13-25, 1994.
    [23] Y. M. Chen, Y. S. Huang, K. Y. Lee, D. S. Tsai and K. K. Tiong, "Characterization of IrO2/CNT nanocomposites," Journal of Materials Science: Materials in Electronics, vol. 22, pp. 890-894, 2011.
    [24] Y. B. He, A. Stierle, W. X. Li, A. Farkas, N. Kasper and H. Over, "Oxidation of Ir(111): From O−Ir−O Trilayer to Bulk Oxide Formation," J. Phys. Chem. C, vol. 112, p. 11946–11953, 2008.
    [25] W. H. Chung, C. C. Wang, D. S. Tsai, J. C. Jiang, Y. C. Cheng, L. J. Fan, Y. W. Yang and Y. S. Huang, "Deoxygenation of IrO2(1 1 0) surface: Core-level spectroscopy and density functional theory calculation," Surface Science, vol. 604, pp. 118-124, 2010.
    [26] P. S. Patil, P. S. Chigare, S. B. Sadale, T. Seth, D. P. Amalnerkar and R. K. Kawar, "Thickness-dependent properties of sprayed iridium oxide thin films," Materials Chemistry and Physics, vol. 80, pp. 667-675, 2003.
    [27] J. P. Perdew, K. Burke and M. Ernzerh, "Generalized Gradient Approximation Made Simple," Physical Review Letters, vol. 77, pp. 3865-3868, 1996.
    [28] G. Kresse and J. Hafner, "Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium," Physical Review B, vol. 49, pp. 14251-14269, 1994.
    [29] G. Kresse and J. Furthmüller, "Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set," Computational Materials Science, vol. 6, pp. 15-50, 1996.
    [30] G. Kresse and D. Joubert, "From ultrasoft pseudopotentials to the projector augmented-wave method," Physical Review B, vol. 59, pp. 1758-1775, 1999.
    [31] J. Klimes, D. Bowler and A. Michaelides, "Van der Waals density functionals applied to solids," Physical Review B, vol. 83, pp. 195131 1-13, 2011.
    [32] H. J. Monkhorst and J. D. Pack, "Special points for Brillouin-zone integrations," Physical review B, vol. 13, pp. 5188-5192, 1976.
    [33] G. Henkelman, B. P. Uberuaga and H. Jónsson, "A climbing image nudged elastic band method for finding saddle points and minimum energy paths," The Journal of Chemical Physics, vol. 113, pp. 9901-9904, 2000.
    [34] P. Xiao, D. Sheppard, J. Rogal and G. Henkelman, "Solid-state dimer method for calculating solid-solid phase transitions," The Journal of Chemical Physics, vol. 140, pp. 174104 1-6, 2014.
    [35] K. Yoshida, C. Wakai, N. Matubayasi and M. Nakahara, "NMR Spectroscopic Evidence for an Intermediate of Formic Acid in the Water-Gas-Shift," J. Phys. Chem. A, vol. 108, pp. 7479-7482, 2004.
    [36] N. Watanabe, A. Nagaoka, T. Shiraki and A. Kouchi, "Hydrogenation of CO on Pure Solid CO and CO-H2O Mixed Ice," The Astrophysical Journal, vol. 616, pp. 638-642, 2004.
    [37] T. J. Huang and D. H. Tsai, "CO oxidation behavior of copper and copper oxides," Catalysis Letters, vol. 87, pp. 173-178, 2003.
    [38] J. Knudsen, L. R. Merte, G. Peng, R. T. Vang, A. Resta, E. Lægsgaard, J. N. Andersen, M. Mavrikakis and F. Besenbacher, "Low-Temperature CO Oxidation on Ni(111) and on a Au/Ni(111) Surface Alloy," ACS Nano, vol. 4, pp. 4380-4387, 2010.
    [39] R. V. Goncalves, R. Wojcieszak, H. Wender, C. S. B. Dias, L. L. R. Vono, D. Eberhardt, S. R. Teixeira and L. M. Rossi, "Easy Access to Metallic Copper Nanoparticles with High Activity and," ACS Appl. Mater. Interfaces, vol. 7, p. 7987−7994, 2015.
    [40] A. Alavi, P. Hu, T. Deutsch, P. L. Silvestrelli and J. Hutter, "CO Oxidation on Pt(111): An Ab Initio Density Functional Theory Study," Physical Review Letters, vol. 80, pp. 3650-3653, 1998.
    [41] M. Chen, Y. Cai, K. K. Gath, S. Axnanda and D. W. Goodman, "Highly active surfaces for CO oxidation on Rh, Pd, and Pt," Surface Science, vol. 601, pp. 5326-5331, 2007.
    [42] E. M. Stuve, R. J. Madix and C. Brundle, "CO oxidation on Pd(100): A study of the coadsorption of oxygen and carbon monoxide," Surface Science, vol. 146, pp. 155-178, 1984.
    [43] J. Kašpar, P. Fornasiero and N. Hickey, "Automotive catalytic converters: current statusand some perspectives," Catalysis Today, vol. 77, pp. 419-449, 2003.
    [44] A. Eichler, "CO oxidation on transition metal surfaces: reaction ratesfrom first principles," Surface Science, vol. 498, pp. 314-320, 2002.
    [45] J. T. Hirvi, T. J. J. Kinnunen, M. Suvanto, T. A. Pakkanen and J. K. Nørskov, "CO oxidation on PdO surfaces," The Journal of Chemical Physics, vol. 133, pp. 0847041-0847046, 2010.
    [46] H. Over, O. Balmès and E. Lundgren, "Direct comparison of the reactivity of the non-oxidic phase of Ru(0 0 0 1) and the RuO2 phase in the CO oxidation reaction," Surface Science, vol. 603, pp. 298-303, 2009.
    [47] X. Xie, Y. Li, Z. Q. Liu, M. Haruta and W. Shen, "Low-temperature oxidation of CO catalysed by Co3O4," Nature, vol. 458, pp. 746-749, 2009.
    [48] K. M. Gameel, I. M. Sharafeldin, A. U. Abourayya, A. H. Biby and N. K. Allam , "Unveiling CO adsorption on Cu surfaces: new insights from molecular orbital principles," Phys. Chem. Chem. Phys., vol. 20, pp. 25892-25900, 2018.
    [49] N. Kakati, J. Maiti, S. H. Lee, S. H. Jee, B. Viswanathan and Y. S. Yoon, "Anode catalysts for direct methanol fuel cells in acidic media: do we have any alternative for Pt or Pt–Ru?," Chemical reviews, vol. 114, pp. 12397-12429, 2014.
    [50] A. S. Aricò, S. Srinivasan and V. Antonucci, "DMFCs: From Fundamental Aspects to Technology Development," Fuel Cells, vol. 1, pp. 133-161, 2001.
    [51] W. Li, X. Wang, Z. Chen, M. Waje and Y. Yan, "Pt−Ru Supported on Double-Walled Carbon Nanotubes as High-Performance Anode Catalysts for Direct Methanol Fuel Cells," J. Phys. Chem. B, vol. 110, pp. 15353-15358, 2006.
    [52] V. P. Zhidanov, "Lattice-gas model for description of adsorbed molecules; Application to CO oxidation on Ir(110)," Surface Science, vol. 123, pp. 106-116, 1982.
    [53] T. L. M. Pham, E. G. Leggesse and J. C. Jiang, "Ethylene formation by methane dehydrogenation and C–C coupling reaction on a stoichiometric IrO2 (110) surface – a density functional theory investigation," Catalysis Science & Technology, vol. 5, no. 8, pp. 4064-4071, 2015.
    [54] Z. Liang, T. Li, M. Kim, A. Asthagiri and J. F. Weaver, "Low-temperature activation of methane on the IrO2(110) surface," Science, vol. 356, no. 6335, pp. 299-303, 2017.
    [55] C. Y. Liu, C. C. Chang, J. J. Ho and E. Y. Li, "First-Principles Study on CO Removing Mechanism on Pt-Decorated Oxygen-Rich Anode Surfaces (Pt2/o-MO2(110), M = Ru and Ir) in DMFC," J. Phys. Chem. C, vol. 121, no. 18, pp. 9825-9832, 2017.
    [56] T. L. M. Pham, S. Nachimuthu, J. L. Kuo and J. C. Jiang, "A DFT study of ethane activation on IrO2(110) surface by precursor-mediated mechanism," Applied Catalysis A: General, vol. 541, pp. 8-14, 2017.
    [57] X. Y. Xu, J. Li, H. Y. Xu, X. F. Xu and C. Y. Zhao, "DFT investigation of Ni-doped graphene: catalytic ability to CO oxidation," New Journal of Chemistry, vol. 40, pp. 9361-9369, 2016.
    [58] Q. G. Jiang, Z. M. Ao, S. Li and Z. Wen, "Density functional theory calculations on the CO catalytic oxidation on Al-embedded graphene," RSC Advances, vol. 4, no. 39, pp. 20290-20296, 2014.
    [59] R. G. S. Pala, W. Tang, M. M. Sushchikh, J. N. Park, A. J. Forman, G. Wu, A. Kleiman-Shwarsctein, J. P. Zhang, E. W. McFarland and . H. Metiu, "CO oxidation by Ti-and Al-doped ZnO: oxygen activation by adsorption on the dopant," Journal of Catalysis, vol. 266, no. 1, pp. 50-58, 2009.
    [60] K. Morgan, K. J. Cole, A. Goguet, C. Hardacre, G. J. Hutchings, N. Maguire, S. O. Shekhtman and S. H. Taylor , "TAP studies of CO oxidation over CuMnOX and Au/CuMnOX catalysts," Journal of Catalysis, vol. 276, no. 1, pp. 38-48, 2010.
    [61] K. Kim and J. W. Han, "Mechanistic study for enhanced CO oxidation activity on (Mn,Fe) co-doped CeO2(111)," Catalysis Today, Vols. 293-294, pp. 82-88, 2017.
    [62] T. Li, M. Kim, Z. Liang, A. Asthagiri and J. F. Weaver, "Hydrogen oxidation on oxygen-rich IrO2(110)," Catalysis, Structure & Reactivity, vol. 4, no. 4, pp. 1-13, 2018.
    [63] L. N. Wu, Z. Y. Tian and W. Qin, "DFT Study on CO Catalytic Oxidation Mechanism on the Defective," The Journal of Physical Chemistry C, vol. 122, no. 29, p. 16733–16740, 2018.
    [64] M. E. Dry, "Practical and theoretical aspects of the catalytic Fischer-Tropsch process," Applied Catalysis A: General, vol. 138, pp. 319-344, 1996.
    [65] J.-P. Lange, "Methanol Synthesis: A Short Review of Technology Improvements," Catalysis Today, vol. 64, pp. 3-8, 2001.
    [66] P. J. Tijm, F. J. Waller and D. M. Brown, "Methanol technology developments for the new millennium," Applied Catalysis A: General, vol. 221, pp. 275-282, 2001.
    [67] C. Hammond, S. Conrad and I. Hermans, "Oxidative Methane Upgrading," ChemSusChem, vol. 5, pp. 1668-1686, 2012.
    [68] J. H. Lunsford, "Catalytic conversion of methane to more useful chemicals and fuels: a challenge for the 21st century," Catalysis Today, vol. 63, pp. 165-174, 2000.
    [69] A. Holmen, "Direct conversion of methane to fuels and chemicals," Catalysis Today, vol. 142, pp. 2-8, 2009.
    [70] M. C. Alvarez-Galvan, N. Mota, M. P. Ojeda, s. rojas, R. M. Navarro Yerga and J. L. G. Fierro, "Direct methane conversion routes to chemicals and fuels," Catalysis Today, vol. 171, pp. 15-23, 2011.
    [71] K. G.E. and M. Bhasin, "Synthesis of Ethylene via Oxidative Coupling of Methane. I. Determination of active catalysts," Journal of Catalysis, vol. 73, pp. 9-19, 1981.
    [72] T. Ito and J. H. Lunsford, "Synthesis of ethylene and ethane by partial oxidation of methane over lithium-doped magnesium oxide," Nature, vol. 314, pp. 721-722, 1985.
    [73] J. A. Sofranko, J. J. Leonard and C. A. Jones, "The oxidative conversion of methane to higher hydrocarbons," Journal of Catalysis, vol. 103, pp. 302-310, 1987.
    [74] K. Otsuka and Y. Wang, "Direct conversion of methane into oxygenates," Applied Catalysis A: General, vol. 222, pp. 145-161, 2001.
    [75] D. L. Trimm, "The Formation and Removal of Coke from Nickel Catalyst," Catalysis Reviews - Science and Engineering, vol. 16, pp. 155-189, 1977.
    [76] S. Tenner, Hydrocarbon Process, vol. 64, p. 106, 1985.
    [77] F. Fischer and H. Tropsch, "Conversion of methane into hydrogen and carbon monoxide," Brennst. Chem., vol. 3, 1928.
    [78] A. M. Gadalla and B. Bower, "The role of catalyst support on the activity of nickel for reforming methane with CO2," Chemical Engineering Science, vol. 43, pp. 3049-3062, 1988.
    [79] A. M. Gaddalla and M. E. Sommer, "Carbon dioxide reforming of methane on nickel catalysts," Chemical Engineering Science, vol. 44, pp. 2825-2829, 1989.
    [80] J. Rostrup-Nielsen, "Syngas for C1-Chemistry. Limits of the Steam Reforming Process," Studies in Surface Science and Catalysis, vol. 36, pp. 73-78, 1988.
    [81] J. R. Rostrup-Nielsen and J. H. B. Hansen, "CO2-Reforming of Methane over Transition Metals," Journal of Catalysis, vol. 144, pp. 38-49, 1993.
    [82] A. T. Ashcroft, A. K. Cheetham, M. L. H. Green and P. D. F. Vernon, "Partial oxidation of methane to synthesis gas using carbon dioxide," Nature, vol. 352, pp. 225-226, 1991.
    [83] A. M. Efstathiou, A. Kladi, V. A. Tsipouriari and X. E. Verykios, "Reforming of Methane with Carbon Dioxide to Synthesis Gas over Supported Rhodium Catalysts: II. A Steady-State Tracing Analysis: Mechanistic Aspects of the Carbon and Oxygen Reaction Pathways to Form CO," Journal of Catalysis, vol. 158, pp. 64-75, 1996.
    [84] J. Nakamura, S. Umeda, K. Kubushiro, K. Kunimori and T. Uchijima, "Production of synthesis gas by partial oxidation of methane over the group VIII metal catalysts," Journal of The Japan Petroleum Institute, vol. 36, pp. 97-104, 1993.
    [85] Y. Osamu, N. Takao, O. Kohji and F. Kaoru, "Reduction of Carbon Dioxide by Methane with Ni-on-MgO-CaO Containing Catalysts," Chemistry Letters, vol. 21, pp. 1953-1954, 1992.
    [86] F. Polo-Garzon, M. He and D. A. Bruce, "Ab initio derived reaction mechanism for the dry reforming of methane on Rh doped pyrochlore catalysts," Journal of Catalysis, vol. 333, pp. 59-70, 2016.
    [87] Y. A. Zhu, D. Chen, X. G. Zhou and W. K. Yuan, "DFT studies of dry reforming of methane on Ni catalyst," Catalysis Today, vol. 148, pp. 260-267, 2009.
    [88] J. Niu, X. Du, J. Ran and R. Wang, "Dry (CO2) reforming of methane over Pt catalysts studied by DFT and kinetic modeling," Applied Surface Science, vol. 376, pp. 79-90, 2016.
    [89] Q. Zhou, L. Yuan, X. Yang, Z. Fu, Y. Tang, C. Wang and H. Zhang, "DFT study of formaldehyde adsorption on vacancy defected graphenedoped with B, N, and S," Chemical Physics, vol. 440, pp. 80-86, 2014.
    [90] S. Lin, R. S. Johnson, G. K. Smith, D. Xie and H. Guo, "Pathways for methanol steam reforming involving adsorbed formaldehyde and hydroxyl intermediates on Cu(111): density functional theory studies," Phys. Chem. Chem. Phys, vol. 13, pp. 9622-9631, 2011.
    [91] P. Błońsk and N. López, "On the Adsorption of Formaldehyde and Methanol on a Water-Covered Pt(111): a DFT-D Study," The Journal of Physical Chemistry C, vol. 116, no. 29, pp. 15484-15492, 2012.
    [92] J. P. Agrawal, "Recent trends in high-energy materials," Progress in Energy and Combustion Science, vol. 24, pp. 1-30, 1998.
    [93] T. Li, M. Kim, Z. Liang, A. Asthagiri and J. F. Weaver, "Dissociative Chemisorption and Oxidation of H2 on the Stoichiometric IrO2(110) Surface," Topics in Catalysis, vol. 61, pp. 397-411, 2018.

    無法下載圖示 全文公開日期 2024/08/16 (校內網路)
    全文公開日期 2024/08/16 (校外網路)
    全文公開日期 2024/08/16 (國家圖書館:臺灣博碩士論文系統)
    QR CODE