簡易檢索 / 詳目顯示

研究生: 陳家宏
Chia-Hung Chen
論文名稱: 改變低溫共燒陶瓷介電常數微調晶片天線中心頻率
Adjusting the Center Frequency of a Cofired Chip Antenna by Changing the Dielectric Constant of the Substrate
指導教授: 林舜天
Shun-Tian Lin
口試委員: 楊成發
Chang-Fa Yang
胡泉凌
none
王錫福
Sea-Fu Wang
鄭國忠
Kuo-Chung Cheng
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 64
中文關鍵詞: 低溫共燒晶片天線介電常數
外文關鍵詞: Dielectric constant, Chip antenna, LTCC
相關次數: 點閱:538下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究的目的為改變低溫共燒陶瓷的燒結溫度對於改變天線的性能影響,實驗中以Ba0.88(Nd1.40Bi0.42La0.30)Ti4O12,(B(NBL)T)微波介電陶瓷中添加55 vol.%鹼金族硼矽玻璃,以不同燒結溫度800℃至950℃,持溫時間30至90分鐘探討其介電性質,再以此材料作為基材與網印的銀膠線路共燒製成晶片天線後,分別以網路分析儀和無反射室量測其反射損失及場型。實驗結果發現,燒結溫度由800℃提升至950℃時,其介電常數由19.2提升至23.3,造成此現象是因B(NBL)T相溶解於玻璃造成結晶形態改變而提高其介電常數,此種因晶形改變而提高其介電常數現象嚴重發生在燒結溫度從800至850℃之間。此晶片天線具有7×4×1mm3微小型體積,因燒結溫度升高時提高介電常數造成天線中心頻率往低頻偏移,這種現象可用於控制天線因網卡外蓋高度不同所造成不同程度的中心頻率偏移,可將已偏離的中心頻率調整至可使用的範圍內,以符合藍芽及IEEE 802.11 b/g規範。


The main purpose of this research is to vary the antenna’s center frequency by using ceramic substrates of different dielectric constants for different environments. Microwave dielectric ceramic Ba0.88(Nd1.40Bi0.42La0.30)Ti4O12,(B(NBL)T) was mixed with 55 vol.% alkali-borosilicate glass as sintering additive then sintered at temperatures ranging from 800℃ to 950℃ for holding times ranging from 30 to 90 minutes, applied to investigate its dielectric properties. Subsequently, the composite was applied as antenna’s substrate that was co-fired with silver paste meander line, by screen printing. Its reflection loss and far-field patterns were then measured by network analyzer and Anechoic Chamber.
Increasing the sintering temperature from 800℃ to 950℃ varies the dielectric constant from 19.2 to 23.3. This phenomenon was caused by the dissolved of B(NBL)T phase in glass, resulting in the increase of dielectric constant due to the change of crystalline morphology, particularly from 800 to 850℃. This antenna has a size as small as 4.7x7x1 mm3. The center frequency shifted to lower one when the dielectric constant increases, which can be used to adjust the center frequency, which was affected by LAN card housing, and make it to fulfill Bluetooth and IEEE 802.11 b/g standards.

誌謝 I 摘要 II Abstract III 目錄 IV 表目錄 VII 圖目錄 VII 第一章 緒論 1 1.1 低溫共燒簡介 1 1.2 LTCC的優缺點 2 1.3 低溫共燒製程 5 1.4 LTCC於無線通訊上的應用 7 1.4.1 LTCC應用於射頻模組 7 1.4.2 LTCC應用於晶片天線 9 第二章 實驗流程 13 2.1 低溫燒結材料配製 13 2.2 天線製造與量測 16 第三章 結果與討論 19 3.1 材料分析 19 3.1.1 NPO-110陶瓷粉末分析 19 3.1.2 玻璃粉末分析 22 3.1.3 B(NBL)T添加鹼金族硼矽玻璃熱分析 23 3.2 B(NBL)T添加鹼金族硼矽玻璃的燒結體分析 24 3.2.1 收縮比 24 3.2.2 微觀SEM分析 26 3.2.3 XRD分析 30 3.3 燒結參數對介電性質的影響 33 3.3.1 密度對介電性質的影響 33 3.3.2 擇優取向對介電常數的影響 35 3.4 B(NBL)T-glass與銀膠共燒分析 36 3.4.1 共燒後之外觀 37 3.4.2 銀膠-基材介面分析 37 3.4.3 共燒後之銀導體電性分析 41 3.5 天線元件製作與量測 44 3.5.1 2.45GHz晶片天線模擬設計 44 3.5.2 低溫共燒晶片天線製作 46 3.5.3 晶片天線S11模擬結果 48 3.5.4 晶片天線S11實測架構 49 3.5.5 不同介電常數天線量測 50 3.5.6 不同網卡外殼封裝之S11量測 52 3.5.7 天線遠場幅射場型量測 58 第四章 結論 59 參考文獻 60

1. H. Jantunen, T. Kangasvieri, J.Vahakangas, S. leppavuori,”Desingn aspects of microwave components with LTCC tehcnique”, Journal of the European Ceramic Society, v.23(2003), p.2541-2548.
2. R. Brown, ”LTCC-Bringing functional integration to RF & microwave products”, National semiconductor Corp. Ltd.,http://207.82.57.10/appinfo/ltcc
3. H. Jantunen, A. Uusimaki, R. Rautioaho, S. Leppavuori, “Temperature coefficient of microwave resonance frequency of a low-temperature cofired ceramic (LTCC) system”, Journal of the American Ceramic Society, v.85(2002), p2971-2976.
4. Y. Ota, K. Kakimoto, H. Ohsato, T.Okawa, ” Low-temperature sintering of Ba6-3xSm8+2xTi18O54 microwave dielectric ceramics by B2O3 and GeO2 addition”, Journal of the European Ceramic Society, v.24(2004), p1775-1760.
5. W. Huang, K.S. Liu, L.W. Chu, G.H. Hsiue, I .N. Chu,”Microvave dielectric properties of LTCC materials consisting of glass-Ba2Ti9O20 composites”, Journal of the European Ceramic Society, v.23(2003), p2559-2563.
6. C. S. Chen, C. C. Chou, W. J. Shih, K. S. Liu, C. S. Chen, I N. Lin,”Microwave dielectric properties of glass-ceramic composites for low temperature co-firable ceramics”, Materials Chemistry and Physics, v.79(2003), p129-134.
7. H. Jantunen, R. Rautioaho, A. Uusimaki, S. Leppavuori, ” Compositions of MgTiO3-CaTiO3 ceramic with two borosilicate glasses for LTCC technology”, Journal of the European Ceramic Society, v.20(2000), p.2331-2336.
8. R. Kulke, M. Rittweger, P. Uhlig, C. Gunner, ”LTCC-Multilayer ceramic for wireless and sensor applications”, http://www.ltcc.de/r-d-projects/publications/publications.html.
9. T. Rabe, M. Gemeinert, W.A. Schiller, ” Development of advanced low temperature co-fired ceramics (LTCC)”, Key Engineering Materials, v.264-268(2004), p.1181-1184.
10. S. Consolazio, K. Nguyen, D. Biscan, K. Vu, A. Ferek, A. Ramos, “Low temperature cofired ceramic (LTCC) for wireless applications”, IEEE MTT-S International Topical Symposium on Technologies for Wireless Applications, Proceedings,publisher:IEEE, (1999), p.201-205.
11. S. Radha, K. Harvey, “Advances in LTCC components for RF and microwave frequencies”, International SAMPE Symposium and Exhibition, v. 48(2003), p. 101-105.
12. J.W. Lee, B.S. Kim, K.S. Kim, K.C. Eun, M.S. Myung, “A comparison between PCB substrate integrated antenna and LTCC antenna at millimeter-wave”, Proceedings of the IASTED International Conference on Antennas, Radar, and Wave Propagation, Proceedings of the International Conference on Antennas, Radar, and Wave Propagation, (2004), p. 78-81.
13. http://www.umec-web.net ,Universal Microelectronics Co. Ltd.
14. C. C. Cheng, T. E. Hsieh, I. N. Lin,” Microwave dielectric properties of glass-ceramic composites for low temperature co-firable ceramics”, Journal of the European Ceramic Society, v.23(2003), p.2553-2558.
15. C. Q. Scrantom, J. C. Lawson, “LTCC technology:where we are and where we’re going -Ⅱ”, Technologies for Wireless Applications, Digest. 1999 IEEE MTT-S Symposium on, 1999.
16. K. Hiroshi, S. Ryuichi, K. Hidenori, ” Al2O3-MgO-ReOx (Re: Rare earth) based LTCC and non-shrinkage firing process”, Journal of the Japan Society of Powder and Powder Metallurgy, v.51(2004), p.285-288.
17. M. Barker, R. Draudt, “Zero shrink process for cost sensitive high volume LTCC applications”, Proceedings of SPIE - The International Society for Optical Engineering, v.4587,(2001), p.26-31.
18. R.L. Wahlers, A.H. Feingold, M. Heinz, “Lead free, zero shrink, substrate bonded LTCC system”, International Symposium on Microelectronics, v.5288(2003), p.206-211.
19. B. Hunt, L. Devlin, “LTCC for RF modules”, IEE Colloquium (Digest), v. 83(2000), p.39-43.
20. G. Sommer, G. Fotheringham, W. John, H. Reichl, ” Comparison of HDI organic and LTCC substrate technology with its potential for RF module application”, Proceedings of SPIE - The International Society for Optical Engineering, v.5288(2003), p.183-188.
21. J. Yang, R. Darveaux, A. Federigan, T. Arellano, S.B. Kim, J.Y. Khim, “Overmolded LTCC RF modules”, Proceedings of SPIE - The International Society for Optical Engineering, v.5231(2003), p.39-42.
22. 胡慶利, 李文熙, ”低溫陶瓷共燒技術在無線通訊市場之應用與趨勢” 中華民國陶業研究學會會刊,第二十二卷,第三期,p.44-53.
23. Y.D. Kim, H.Y. Kim, H.M. Lee, “Dual-band LTCC chip antenna design using stacked meander patch for mobile handsets”, Microwave and Optical Technology Letters, v.45(2005), p.271-273.
24. Y. Dakeya, T. Suesada, K. Asakura, N. Nakajima, H. Mandai, “Chip multilayer antenna for 2.45GHz-band application using LTCC technology”, IEEE MTT-S International Microwave Symposium Digest, v.3(2000), p.1693-1696.
25. 方智逸, “晶片天線之設計”, 碩士論文, 國立台灣科技大學, 台北(2004).
26. JCPDS Card, 35-0331.
27. J. S. Kim, C. I. Cheon, Ta-Ryeong Park, Hae-Seop Shim, ”Dielectric properties and crystal structure of Ba6-3x(Nd,M)8+2xTi18O54(M=La,Bi,Y) microwave ceramics”, Journal of Materials Science, v.35(2000), p.1487-1494.
28. T. Okawa, M. Imaeda, H. Ohsato, “Site occupancy of Bi ions and microwave dielectric properties in Ba6-3xNd8+2xTi18O54 solid solutions”, Materials Science and Engineering, v.88(2002), p.58-61.
29. Y. J. Wu, X. M. Chen, “Modified Ba6-3xNd8+2xTi18O54 microwave dielectric ceramics”, Journal of the European Ceramics Society, v.19(1999), p.1123-1126.
30. Y. Wang, G. Zhang, J. Ma, “Research of LTCC/Cu, Ag multilayer substrate in microelectronic packaging”, Materials Science and Engineering, v.94(2002), p.48-53.
31. W. D. Kingery, H. K. Bowen, D.R. Uhlmann, “Introduction to ceramics”, John Wiley & Sons, Inc.,USA, 1976, p.878-884.
32. 廖昌倫, “ Microstructrues and dielectric properties of low temperature cofired Ba0.88(Nd1.40Bi0.42La0.30)Ti4O12”, 碩士論文, 國立台灣科技大學, 台北(2005).
33. L. C. Chang, B. S. Chiou,“Effect of B2O3 nano-coating on the sintering behaviors and electrical microwave properties of Ba(Nd2-xSmx)Ti4O12 ceramics”, Journal of Electroceramics, v.13(2004), p.829-837.
34. L. C. Chang, B. S. Chiou,“Effect of glass on the sintering behaviors and electrical microwave properties of BaO-Nd2O3-Sm2O3-TiO2 ceramics”, Journal of materials science: materials in electronics, v.15(2004), p.153-158.
35. R.T. Hsu, J.H. Jean, “Key factors controlling camber behavior during the cofiring of a bi-layer ceramic dielectric laminates”, Bulletin of the Chinese Ceramic Society symposium, 2004.
36. K.B. Shim, N.T. Cho, S.W. Lee, “Silver diffusion and microstructure in LTCC multilayer couplers for high frequency applications”, Journal of Materials Science, v.35(2000), p.813-820.
37. http://newport.eecs.uci.edu/~rnelson/EECS174-files/4_POINT_PROBE.pdf
38. 李宜錫, “2.4GHz ISM頻段微型天線元件製造”, 碩士論文, 國立台灣科技大學, 台北(2004).
39. X. Fang, D. Linton, C. Walker, B. Collins, “Dielectric constant characterization using a numerical method for the microstrip ring resonator”, Microwave Optical Technology Letter, v.41(2004), p.14-17.
40. 林建銘, “環氧樹脂陶瓷複材在晶片天線之應用”, 碩士論文, 國立台北科技大學, 台北(2005).
41. www.ee.nthu.edu.tw/~jtchen/com5128/handout/ho10.doc

QR CODE