簡易檢索 / 詳目顯示

研究生: 陳冠宇
Guan-Yu Chen
論文名稱: 鹼激發爐石基膠體配比因子對其工程性質影響之研究
Study of the Influence of Mixing Factors of Alkali-Activated Slag Pastes on Their Engineering Properties
指導教授: 張大鵬
Ta-Peng Chang
口試委員: 陳君弢
Chun-Tao Chen
楊仲家
Chung-Chia Yang
李釗
Chau Lee
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 221
中文關鍵詞: 無機聚合物田口試驗法乾縮鹼激發水玻璃模數爐石養護環境輸氣劑石膏飛灰
外文關鍵詞: dring shrinkage, modulus of water-glass, curring environment, air-entrainment agent
相關次數: 點閱:329下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究係以氫氧化鈉及矽酸鈉溶液作為激發爐石活性之激發劑,改變鹼激發量及水玻璃模數與水固比,以探討新拌及硬固工程性質,並輔以田口試驗法分析上述三因子於及不同拌合時間對其工程性質之影響程度,其次再探討不同養護環境對於工程性質之影響,最後再分別添加石膏、輸氣劑,及飛灰取代爐石進行探討對無機聚合物之性質影響。
    研究結果顯示:(1)水玻璃模數(M.S.)介於0.4 ~ 1.2之間與提高水固比可使新拌漿體具有較佳流動性,但M.S. > 1.2時會發生假凝現象而降低流動性。(2)未添加矽酸鈉溶液時(M.S. = 0)凝結時間較短,隨著水玻璃模數提高而延緩其凝結時間,但鹼激發劑濃度過高(M.S. > 1.6)會發生速凝現象。(3)未添加矽酸鈉溶液時乾縮量最小,但隨著鹼激發劑濃度增加而加大。(4)抗壓強度、動態彈性模數以及剪力模數與超音波波速會隨減少用水量而提升。(5)無機聚合物張力強度極低,僅為抗壓強度之0.2 % ~ 5.8 %。(6)改變激發劑濃度對於熱傳導係數之變化較小;改變液固比可使熱傳導係數明顯降低。(7)田口試驗法中,水玻璃模數對於乾縮量之影響最為顯著。(8)田口試驗法中,顯示對於影響抗壓強度、劈裂強度、動態彈性模數及剪力模數最為顯著之因子為水固比。(9)田口試驗法中,對於超音波波速影響最顯著因子為拌合時間、其次為水固比。(10)添加輸氣劑劑量2.5 %時可降低25.8 %之乾縮量及對於抗壓強度、動態彈性與剪力模數、超音波波速、熱傳導係數等工程性質影響較小。(11)添加石膏對於抑制乾縮之效果不佳,但添加1 %時可使抗壓強度增加。(12)當飛灰取代量增加時,其抗壓強度及超音波波速與熱傳導係數皆隨著取代量增加而下降。


    This research is focused on the production of geopolymer using the sodium hydroxide and sodium silicate. The research subjects are divided into 6 parts. The first is to study the effect of using various parameters of geopolymer mixing proportions on the engineering properties. The second is to analyze and to verify the result of the first part by using Taguchi method. The third is to discuss the influence of curing environment on the engineering properties of geopolymer. The fourth part is to study the adding the gypsum and the fifth part is to study the adding air-entrainment agent with different ratio of slag weight. The final subject is to investigate the effect of engineering properties of geopolymer due to the utilization of fly ash to replace slag as the mixing material.Twelve conclusions can be draw as the following. (1)The flowability can be enhanced by using the M.S. (modulus of water-glass) value ranged from 0.4 to 1.2 and by increasing the L/S (liquid of solid) ratio. (2) The geopolymer which is not mixed with the sodium silicate has the fastest setting time. Additionally, the increasing of setting time occurred due to the enhancing of M.S. value, but if the M.S. value is higher than 1.6 it will result the acceleration of setting time. (3) The geopolymer without using sodium silicate results in the lowest of shrinkage, on the other, hand the shrinkage will increase when the M.S. value is raised. (4) The compressive strength, dynamic elastic modulus, shear modulus and ultrasonic pulse velocity will increase due to the enhanced of the alkali activator concentration. (5) The tensile strength resulting from the experimental work is very low which is about 0.23% to 5.874% of the compressive strength. (6) The effect of adding various concentration of alkali activators on thermal conductivity is not significant, but the L/S ratio gives the significant effect on the thermal conductivity. (7) In Taguchi method, the modulus of water glass is the dominant factor to change the shrinkage of the material. (8)The liquid/solid ratio is the most important factor on compressive strength, splitting tensile strength, dynamic elastic and shear moduli in the Taguchi method analysis. (9)The mixing time is the most important factor for increasing the UPV (ultrasonic pulse velocity) development and the second factor is L/S ratio. (10)The optimum dosage of AEA (air-entrainment agent) is 2.5 % by slag weight because it can decrease the drying shrinkage significantly. (11)The performance of adding the gypsum to inhibit the drying shrinkage is not good,but adding 1 % of gypsum can enhance the compressive strength. (12)The increasing of FA (fly ash) replacement ratio results in the lower value of compressive strength, UPV and coefficient of thermal conductivity.

    中文摘要 I 英文摘要 II 致謝 IV 總目錄 VI 表目錄 XI 圖目錄 XVIII 第一章 緒論 1 1-1 研究動機 1 1-2 研究目的 1 1-3 研究內容及流程 2 第二章 文獻回顧 5 2-1 前言 5 2-2 無機聚合物之發展 5 2-3 無機聚合物之聚合反應機理 6 2-3-1 聚合反應機理 6 2-3-2 無機聚合物之結構 10 2-4 影響無機聚合物之聚合反應及硬固性質之因素 11 2-4-1 鹼激發劑種類之影響 11 2-4-2 鹼激發劑濃度之影響 12 2-4-3 水玻璃模數與不同化合物比例之影響 13 2-4-4 液固比之影響 14 2-4-5 養護溫度與時間之影響 15 2-4-6 添加鹼激發劑方式之影響 16 2-5 爐石粉 17 2-5-1 爐石屬性對鹼性激發劑之影響 19 2-5-2 爐石屬性對水玻璃模數交互影響 20 2-5-3 爐石之比表面積對於聚合反應之影響 20 2-6 無機聚合物之優點及應用 21 2-6-1 優異防火性能 21 2-6-2 高早期抗壓強度 21 2-6-3 重金屬固化處理 22 2-7 無機聚合物之乾縮現象 22 2-7-1 乾縮發生機理 22 2-7-2 乾縮抑制方式 24 2-8 田口試驗法 26 2-8-1 田口法概論 26 2-8-2 田口試驗法之設計流程與分析方法 27 2-8-3 試驗數據分析 29 第三章 試驗計畫 49 3-1 試驗內容 49 3-2 試驗材料 49 3-3 試驗儀器與設備 50 3-4 各試驗流程之變數及項目 52 3-4-1 試體編號說明 52 3-4-2 試驗流程說明 52 3-4-3 試驗項目說明 54 3-5 無機聚合物試體之拌合與施作 56 3-5-1 無機聚合物拌合過程 56 3-6 試驗方法 57 3-6-1 新拌性質試驗 57 3-6-2 硬固性質試驗 58 第四章 結果與討論 79 4-1 全因子試驗結果 79 4-1-1 各因子變化對新拌性質之影響 79 4-1-2 全因子試驗之乾縮量試驗 81 4-1-3 全因子試驗之抗壓強度試驗 83 4-1-4 全因子試驗之劈裂與抗彎強度試驗 84 4-1-5 全因子試驗之動態彈性模數與動態剪力模數試驗 87 4-1-6 全因子試驗之超音波波速試驗 88 4-1-7 全因子試驗之熱傳導係數試驗 89 4-1-8 全因子試驗法小結 90 4-2 田口試驗法 92 4-2-1 田口試驗法之乾縮量試驗 92 4-2-2 田口試驗法之抗壓強度試驗 93 4-2-3 田口試驗法之劈裂強度試驗 94 4-2-4 田口試驗法之動態彈性與剪力模數試驗 96 4-2-5 田口試驗法之超音波波速試驗 97 4-2-6 田口試驗法之熱傳導係數試驗 98 4-3 不同養護環境對爐石基無機聚合物工程性質之影響 99 4-4 添加輸氣劑對於爐石基無機聚合物工程性質之影響 101 4-5 添加石膏對於爐石基無機聚合物工程性質之影響 103 4-6 以飛灰取代爐石對於爐石基無機聚合物工程性質之影響 104 第五章 結論與建議 160 5-1 結論 160 5-2 建議 162 參考文獻 164 附錄 A 各試驗之試驗結果 174

    1. Davidovits, J. (1982), “Mineral Polymers and method of making them,”USA Paten, No.4, pp. 349, 386.
    2. Lloyd, R.R., Provis, J.L., and Van Deventer, J.S.J. (2009),“Microscopy and microanalysis of inorganic polymer cements. 2: The gel binder,” Journal of Materials Science, Vol. 44, No. 2, pp. 620 - 631.
    3. Dombrowski, K.A., and Buchwald, M. Weil (2007), “The influence of calcium content on structure and thermal performance of fly ash based geopolymers,” Journal of Materials Science, Vol. 42, No. 9, pp. 3033-3042.
    4.Geopolymer Institute、http://www.geopolymer.org
    5.Davidovits, J. (1994), “Geopolymer:man-made rock geosynthesis and the resulting development of very early high strength cement,” Journal of Materials Education, Vol. 16, No. 2-3, pp. 91- 139.
    6.陳志賢(2009),「含矽質廢棄物之無機聚合物」,博士論文,國立成功大學土木工程研究所。
    7.Shi, C., Krivenko, P.V., and Roy, D. (2006), Alkali-activated Cement and Concrete, London and New York: Taylor & Francis.
    8.Li, C., Sun, H., and Li, L. (2010), “A review: The comparison between alkali-activated slag (Si+Ca) and metakaolin (Si+Al) cement,” Cement and Concrete Research, doi: 10.1016.
    9.Xu, H., Van Deventer, J.S.J., and Luckey, G.C. (2001), “Effect of alkali metals on the preferential geopolymerization of stilbite/kaolinite mixtures,” Industrial Engineering Chemical Research, Vol. 40, pp. 3749-3756.
    10.李元凱(2008),「偏高嶺土聚合膠體工程性質之研究」,碩士論文,國立台灣科技大學營建工程系。
    11.林瑋倫(2009),「鹼激發爐石基膠體工程性質之研究」,碩士論文,國立台灣科技大學營建工程系。
    12.Xu, H., and Van Deventer, J.S.J. (2000) “The Geopolymerization of alumino-silicate minerals,” International Journal Minerals Process, Vol. 59, No. 3, pp. 247 -266.
    13.Van Jaarsveld, J.G.S., Van Deventer, J.S.J. and Lorenzen, L. (1997), “The potential use of geopolymeric materials to immobilize toxic metals: Part I,” Theory and application, Minerals Engineering, Vol. 10, No.7, pp. 659-669.
    14.黃立遠(2010),「飛灰基無機聚合物工程性質及應用之研究」,博士論文,國立台灣科技大學營建工程系。
    15.Xu, H., and Van Deventer, J.S.J. (1999), “The geopolymerisation of natural alumino-silicates,” Proceedings of Geopolymere 99 Second International Conference, edited by: Davidovits, J., Davidovits, R. and James, C., Institut Géopolymère, Saint-Quentin, France, pp. 43–64.
    16.Davidovits, J. (1999), “Chemistry of geopolymeric systems terminology,” Proceedings of Geopolymere 99 Second International Conference, edited by: Davidovits, J., Davidovits, R. and James, C., Institut Géopolymère, Saint-Quentin, France, pp. 9-40.
    17.Sun, W., Zhang, Y. S., and Lin, W. and Liu, Z.Y. (2004) “In situ monitoring of the hydration process of K-PS geopolymer cement with ESEM,” Cement and Concrete Research, Vol. 34, pp. 935–940.
    18.Barbosa, V.F., MacKenzie, K.J.D., and Thaumaturgo, C. (2000) “Synthesis and characterisation of materials based on inorganic polymers of alumina and silica: sodium polysialate polymers,” International Journal of Inorganic Materials, Vol. 2, No.4, pp. 309–317.
    19.Duxson, P., Fernández-Jiménez, A., and Provis, J.L. and Lukey, G.C. and Palomo, A. and Van Deventer, J.S.J. (2007), “Geopolymer technology: the current state of the art,” Journal of Material Science, Vol. 42, No.9, pp. 2917-2933.
    20.Davidovits, J. (2005), “Geopolymer chemistry and sustainable development. The poly (sialate) terminology: a very useful and simple model for the promotion and understanding of green-chemistry,” Geopolymer, Green Chemistry and Sustainable Development Solutions, edited by: Davidovits, J., Institut Géopolymère, Saint-Quentin, France, pp. 9-15.
    21.Shi, C., and Day, R.L. (1996), “Some factors affecting early hydration of alkali-slag cement,” Cement and Concrete Research, Vol. 26, No. 3, pp. 439-447.
    22.Shi, C., and Day, R.L. (1995), “A calorimetric study of early hydration of alkali-slag cement,” Cement and Concrete Research, Vol. 25, No.6, pp. 1333 – 1346
    23.Song, S., and Jennings, H.M. (1999), “Pore solution chemistry of alkali-activated groud granulated blast-furnace slag,” Cement and Concrete Research, Vol. 29, No. 2, pp. 159-170.
    24.Glukivski, V.D. (1979), Alkali-earth binder and concrete produced with them, USSR, Russian , Visheka shkola, Kiev.
    25.Phair, J.W., and Van Deventer, J.S.J. (2002), “Effect of silicate activator pH on microstructural characteristics of waste-based geopolymers,” international Journal Minerals Process, Vol. 66, No. 1-4, pp. 121-143.
    26.朱純熙、盧晨(2001),「水玻璃硬化的認識過程」,無機鹽工業,上海,第三十三卷,第一期,第22-25頁。
    27.Komnitasa, K., Zaharaki, D., and Perdikatsis, V. (2009), “Effect of synthesis parameters on the compressive strength of low-calcium ferronickel slag inorganic polymers,”Journal of Hazardous Materials, Vol. 161, No. 2-3, pp. 760–768.
    28.Brough, A.R., Holloway, M., and Sykes, J. and Atkinson, A. (2000), “Sodium silicate-based alkali-activated slag mortars Part II: The retarding effect of additions of sodium chloride or malic acid,” Cement and Concrete Research, Vol. 30,No. 9, pp. 1375 - 1379.
    29.Phair, J.W., and Van Deventer J.S.J. (2001), “Effect of silicate actvator pH on the leach and material characteristics of waste-based inorganic polymers,” Minerals Engineering, Vol. 14, No. 3, pp. 289–304.
    30.付興華、陶文宏、孫鳳金(2008),「水玻璃對地聚物膠凝材料性能影響的研究」,水泥工程,濟南,第二期,第6-10頁。
    31.Silva, P.D., Sagoe – Crenstil, K. and Sirvivatnanon, V. (2007), “Kinetics of geopolymerization: Role of Al2O3 and SiO2,” Cement and Concrete Research, Vol. 37, No. 4, pp. 512 - 518.
    32.馬鴻文、凌發科、楊靜、王剛(2002),「利用鉀長石尾礦制備礦物聚合材料的實驗研究」,地球科學-中國地質大學學報,北京,第二十七卷,第五期,第576 - 583頁。
    33.鄭娟榮,周同和,劉麗娜(2007),「鹼-偏高嶺石-礦渣系膠凝材的凝結硬化性能研究」,矽酸鹽通報,鄭州,第二十六卷,第六期,第1064 - 1067頁。
    34.Bakharev, T., Sanjayan, J.G., and Cheng, Y.B. (1999), “Effect of Elevated temperature curing on properties of alkali-activated slag concrete,” Cement and Concrete Research, Vol. 29, No. 10, pp. 1619-1625.
    35.Kong, D.L.Y., and Sanjayan, J.G. (2008), “Damage behavior of geopolymer composite exposed to elevated temperatures,” Cement and Concrete Research, Vol. 30, No. 10, pp. 986-991.
    36.Ravikumar, D., Peethamparan, S., and Neithalath, N. (2010), “Structure and strength of NaOH activated concretes containing fly ash or GGBFS as the sole binder,” Cement and Concrete Composites, Vol. 32, No. 6, pp. 399-410.
    37.Swanepoel, J.C. and Strydom, C.A. (2002), “Utilisation of fly ash in a geopolymeric material,” Applied Geochemistry, Vol. 17, No. 6, pp. 1143-1148.
    38.戴詩潔(2005),「高嶺石鋁矽酸鹽聚合材料之研究」,碩士論文,國立台北科技大學材料及資源工程系。
    39.Fernández-Jimenez, A., Palomo J.G., and Puertas, F. (1999), “Alkali-activated slag mortars mechanical strength behavior,” Cement and Concrete Composites, Vol. 29, No. 8, pp. 1313-1321.
    40.Wang, S.D., Scrivener, K.L., and Pratt, P.L. (1994), “Factors affecting the strength of alkali-activated slag,” Cement and Concrete Research, Vol. 24, No. 6, pp. 1033–1043.
    41.黃兆龍(1999),「混凝土性質與行為」,詹氏書局。
    42.Maragkos, I., Giannopoulou, I.P., and Panias, D. (2009), “Synthesis of ferronickel slag-based geopolymers,” Minerals Engineering, Vol. 22, No. 2, pp. 196-203.
    43.Palomo, A., Grutzeck, M.W., and Blanco, M.T. (1999), “Alkali-activated fly ashes a cement for the future,” Minerals Engineering, Vol. 29, No. 8, pp. 1323 - 1329.
    44.蒲心誠(1994),「高強混凝土與高強鹼爐石混凝土」,混凝土,第六卷,第三期。
    45.Mehta, P.K. (1986), Concrete structure, properties and materials, Prentice-Hall .
    46.Puertas, F., Palacios, M., and Gil-Maroto, A. and Vázquez, T. (2009), “Alkali - aggregate behavior of alkali - activated slag mortars: effect of aggregate type,” Cement and Concrete Composite, Vol. 31, No. 5, pp. 277-284.
    47.Bakharev, T., Sanjayan, J.G., and Chen, Y. B. (1999), “Alkali activation of Australian slag cements,” Cement and Concrete Research, Vol. 29, No. 1, pp. 113-120.
    48.Collins, F.G., and Sanjayan, J.G. (1999), “Workability and mechanical properties of alkali activated slag concrete,” Cement and Concrete Research, Vol. 29, No. 3, pp. 113 -120.
    49.蕭遠智(2002),「鹼活化電弧爐還原渣之水化反應特性」,碩士論文,國立中央大學土木工程系。
    50.Shi, C., and Day, R.L. (1996), “Selectivity of alkaline activators for the activation of slag,” Cement, Concrete and Aggregates, Vol. 18, No. 1, pp. 8-14.
    51.Shi, C., and Li, Y. (1989), “Investigation on some factors affecting the characteristic of alkali-phosphorus slag cement,” Cement and Concrete Research, Vol. 19,No.4, pp. 527 -533.
    52.Shi, C., and Xie, P. (1998), “interface between cement paste and quartz sand in alkali-activated slag mortars,” Cement and Concrete Research, Vol. 28, No. 6, pp. 1619-1625.
    53.Davidovits, J. (2008), Geopolymer chemistry and applications, France, Saint-Quentin, Institut Géopolymère, pp. 384 –385.
    54.Davidovits, J.,(1999), Fire proof Geopolymeric, St.Quentin, France Cordi-Géopolymère, pp. 165 - 170.
    55.邱俊萍(2006),「利用高爐爐渣製成無機聚合材料之研究」,碩士論文,國立台北科技大學材料及資源工程系。
    56.Davidovits, J. (1994), “Global warming impact on the cement and aggregates industries,” Published in world resource review, Vol. 6, No. 2.
    57.Phair, J.W., Van Deventer, J.S., and Smith, J.J.D. (2004), “Effect of Al source and alkali activation on Pb and Cu immobilisation in fly-ash based geopolymers,” Applied Geochemistry, Vol. 19, No. 3, pp. 423–434.
    58.Wang, S.D., Pu, X.C., and Scrivener, K.L., and Pratt, P.L. (1995), “Alkali - activated cement and concrete. A review of properties and problems,” Advances in Cement Research, Vol. 7, pp. 93-102.
    59.林孟曄(2006),「利用燃煤底灰製成無機聚合材料之研究」,碩士論文,國立台北科技大學材料及資源工程系所。
    60.金漫彤(2005),「土壤聚合物固化重金屬技術及終產物研究」,碩士論文,浙江大學。
    61.李宜桃(2003),「鹼活化還原渣收縮及抑制方法之研究」,碩士論文,國立中央大學土木工程研究所。
    62.Palacios, M., and F. Puertas, (2007), “Effect of shrinkage-reducing admixtures on the properties of alkali - activated slag mortars and pastes,”Cement and Concrete Research, Vol.37, No. 3, pp. 691 - 702.
    63.曾偉林(2001),「鹼活化爐石粉基質材料製成與基本特性之探討」,碩士論文,國立海洋大學河海工程系。
    64.Caijun Shi (1996), “Strength, pore structure and permeability of alkali - activated slag mortars,” Cement and Concrete Research, Vol. 26, No. 12, pp. 1789-1799.
    65.Collins, F., and Sanjayan, J.G. (2000), “Effect of pore size distribution on drying shrinkage properties of alkali - activated slag concrete, ” Cement and Concrete Research, Vol. 30, No. 9, pp. 1401-1406.
    66.Cengiz Duran Atiş, Cahit Bilim, Ӧzlem Celik, Okan Karahan (2009), Influence of activator on the strength and drying shrinkage of alkali - activated slag mortar, Construction and Buiding Materials, Vol. 23, pp. 548 - 555.
    67.Bakharev, T., Sanjayan, J.G., Cheng, Y.B., (2000), “Effect of admixtures on properties of alkali-activated slag concrete,” Cement and Concrete Research, Vol. 30, No. 9, pp. 1367 - 1374.
    68.田耀遠(2004),「田口法應用於混凝土配比設計及交互作用之研究」,博士論文,國立台灣科技大學營建工程學系。
    69.周宗億(2005),「射出/壓縮成型加工參數對成品機械性質之最適化設計」,碩士論文,國立中央大學機械工程系。
    70.張哲維(2009),「環氧樹脂工程性質與修補成效之研究」,碩士論文,國立台灣科技大學營建工程系。
    71.張季娜,羅仕勇,宋振昌,蔡彰文,陳世璉,莊泰旭,邱鎮宏,高述崙譯(2003),「田口式品質工程導論」,校定:鍾清章,中華民國品質學會,台北,初版八刷。
    72.Helmuth, R.A. (1986), Water-Reducing Properties of fly ash in Cement Pastes, Mortars, and Concrete : Causes and Test Methods, ACI SP-91, Vol.1, pp. 723-740.
    73.李輝煌(2008),「田口方法品質設計的原理與實務」,台北,高立圖書有限公司,第三版。
    74.丁志華、戴寶通(2001),「田口試驗法(Ⅰ)」,奈米通訊,第8卷,第三期,第7 - 11頁。
    75.Krizan, D.,and Zivanovic, B. (2002),“Effects of dosage and modulus of water glass on early hydration of alkali-slag cement,”Cement and Concrete Research, Vol. 32 , No. 8, pp. 1181 – 1188.
    76.T. E. Stanton (1940),“Expansion of concrete through reaction between cement and aggregates,”Proceedings of the American Society of Civil Engineers, Vol. 66, No. 10, pp. 1781-1811.
    77.F. Saint-Pierre, P. Rivard, G. Ballivy (2007), “Measurement of alkali-silica reaction progression by ultrasonic waves attenuation,”Cement and Concrete Research, Vol. 96, pp. 948–956.
    78.R. N. Swamy, M. M. Al-Asali (1988), “Engineering properties of concrete affected by alkali–silica reaction,”ACI Materials Journal, Vol. 85, No. 5, pp. 367–374.
    79.Puertas, F., Martínez-Ramírez, S., and Alonso, S., and Vázquez T. (2000),“Alkali-activated fly ash/slag cements: Strength behaviour and hydration products,” Cement and Concrete Research, Vol. 30, No. 10 , pp. 1625-1632.

    無法下載圖示 全文公開日期 2015/07/27 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE