簡易檢索 / 詳目顯示

研究生: 陳佳永
Jia-Yong Chen
論文名稱: 輸入二氧化碳之水泥漿體固碳及工程性質研究
Study of Carbon Fixation and Engineering Properties of Cement Paste with Entraining Carbon Dioxide
指導教授: 陳君弢
Chun-Tao Chen
口試委員: 張大鵬
Da-Peng Zhang
鄭安
An-Zheng
王韡蒨
Wei-Qian Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 114
中文關鍵詞: 水泥漿輸氣劑碳封存碳化反應碳化效率抗壓強度
外文關鍵詞: cement paste, air entraining agent, carbon storage, carbonation, carbonation efficiency, compressive strength
相關次數: 點閱:255下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 大量二氧化碳排放導致全球二氧化碳濃度不斷上升,進而引發全球暖化和氣候變化,已成為當今時代最重要且迫在眉睫的議題之一。混凝土被廣泛應用於各種工程中,但生產水泥的過程卻釋放大量的二氧化碳。因此,若能夠利用混凝土將二氧化碳回收再利用並同時確保其良好的力學性質,將成為解決二氧化碳排放問題的一項有效方法。有鑑於此,本研究探討水泥漿體在新拌過程中輸入二氧化碳氣體之影響,主要可分為兩個部分。第一部分探討不同水灰比(0.4、0.5、0.6)下,不同二氧化碳流量、延後輸入二氧化碳時間及輸氣劑添加重量對抗壓強度之影響。第二部分探討各變數下之固碳效率。前者試驗結果發現,不同二氧化碳流量下,水灰比0.35試體的28天抗壓強度皆低於控制組17-25%。水灰比0.4試體的28天抗壓強度隨著流量增加而下降,流量為0.5 L/min之組別強度提升7%,流量為5 L/min之組別強度下降22%。水灰比0.5的抗壓強度與控制組接近,較無明顯影響。在不同延後輸入二氧化碳時間下,各水灰比試體的抗壓強度皆受到影響。當水灰比為0.35、延後輸入二氧化碳時間45秒時,28天抗壓強度與控制組強度接近。當水灰比為0.4、延後輸入二氧化碳時間45秒時,28天抗壓強度高於控制組強度5%。不同輸氣劑劑量添加下,當水灰比為0.4,輸氣劑添加重量從0.05%增加到1%時,28天抗壓強度從47.49 MPa降低到33.04 MPa。試驗結果亦發現,低水灰比組之碳化效率較高。在不同水灰比且流量及時間相同下,水灰比0.35的碳化效率為10.1%,而水灰比0.4、0.5的碳化效率為8.1%與5.5%。輸氣劑對於吸收二氧化碳有較好的影響。當水灰比為0.4,輸氣劑重量從0.05%增加到0.5%時,吸收效率從3.6%增加到4.5%。


    Large amount of carbon dioxide emissions has led to a continuous increase in global carbon dioxide concentration, thereby triggering global warming and climate change and becoming one of the most important and urgent issues nowadays. Concrete is widely used in various engineering projects, but the process of cement production releases a significant amount of carbon dioxide. Therefore, if carbon dioxide could be captured and reused by concrete while ensuring favorable mechanical properties of concrete, it would become an effective method to resolve the issue of carbon emissions. In light of this, this study investigated the impact of introducing carbon dioxide gas into cement slurry during the mixing process, which can be mainly divided into two parts.
    The first part examined the effects of different water-to-cement ratios (0.4, 0.5, 0.6), different carbon dioxide flow rates, delayed carbon dioxide introduction times, and air-entraining agent weights on the compressive strength. The second part investigated the carbon fixation efficiency under various variables. The results of the former experiments showed that under different carbon dioxide flow rates, the 28-day compressive strength of specimens with a water-to-cement ratio of 0.35 was 17-25% lower than the control group. For specimens with a water-to-cement ratio of 0.4, the 28-day compressive strength decreased as the flow rate increased. The group with a flow rate of 0.5 L/min showed a 7% increase in strength, while the group with a flow rate of 5 L/min experienced a 22% decrease in strength. The compressive strength of the specimens with a water-to-cement ratio of 0.5 was similar to that of the control group, showing minimal impact. Under different delayed carbon dioxide introduction times, the compressive strength of specimens with various water-to-cement ratios was affected. When the water-to-cement ratio was 0.35 and the carbon dioxide was introduced 45 seconds later, the 28-day compressive strength was similar to that of the control group. When the water-to-cement ratio was 0.4 and the carbon dioxide was introduced 45 seconds later, the 28-day compressive strength was 5% higher than that of the control group. With different weights of the air-entraining agent added, when the water-to-cement ratio was 0.4, the 28-day compressive strength decreased from 47.49 MPa to 33.04 MPa as the air-entraining agent weight increased from 0.05% to 1%. The results also indicated that the carbonation efficiency was higher in the low water-to-cement ratio group. Under the same flow rate and time conditions with different water-to-cement ratios, the carbonation efficiency was 10.1% for a water-to-cement ratio of 0.35, and 8.1% and 5.5% for water-to-cement ratios of 0.4 and 0.5, respectively. Air-entraining agents had a positive impact on carbon dioxide absorption. When the water-to-cement ratio was 0.4, increasing the air-entraining agent weight from 0.05% to 0.5% led to an increase in absorption efficiency from 3.6% to 4.5%.

    摘要 I Abstract III 致謝 V 目錄 VII 表目錄 XI 圖目錄 XIII 第一章 緒論 1 1.1 研究動機 1 1.2 研究目的 2 1.3 研究方法及流程 2 第二章 文獻回顧 5 2.1 卜特蘭水泥 5 2.1.1 水泥組成 5 2.1.2 水泥水化機理 5 2.2 碳捕存技術 7 2.2.1 前言 7 2.2.2 碳捕捉 7 2.2.3 碳運輸 9 2.2.4 碳封存 9 2.3 混凝土碳化 11 2.3.1 碳化反應機理 11 2.3.2 影響碳化之因子 12 2.3.3 碳化後性質 14 2.3.4 測定方法 14 2.3.5 混凝土碳封存 16 第三章 試驗規劃 29 3.1 試驗材料與設備 29 3.1.1 試驗材料 29 3.1.2 試驗設備 30 3.2 試驗變數及編碼說明 32 3.2.1 試驗變數 32 3.2.2 試驗編碼說明 33 3.3 配比設計 33 3.4 試體製作說明 34 3.5 試驗方法 34 3.5.1 抗壓強度試驗 34 3.5.2 碳化效率 35 3.5.3 吸水率 37 3.5.4 X光繞射分析試驗( XRD) 37 3.5.5 掃描式電子顯微鏡觀測(SEM) 38 3.5.6 熱重分析(TGA) 39 第四章 試驗結果與討論 55 4.1 抗壓強度 55 4.1.1 不同流量影響 55 4.1.2 不同延後輸入二氧化碳時間之影響 57 4.1.3 不同輸氣劑添加重量之影響 60 4.2 碳化效率 62 4.3 碳化對抗壓強度之關係 64 4.4 水化熱試驗 65 4.5 吸水率試驗 65 4.6 X光繞射分析 66 4.7 SEM微觀分析 68 4.8 TGA微觀分析 68 第五章 結論與建議 107 5.1 結論 107 5.1.1 抗壓強度 107 5.1.2 碳化量 108 5.2 建議 110 參考文獻 111

    [1] Babushkin, V. I., Matveev, G. M. and Mchedlov-Petrosian, O. P. (1985). "Thermodynamics of silicates." Springer Berlin, Heidelberg, Germany.
    [2] Behnood, A.,. Van Tittelboom, K and De Belie, N. (2016). "Methods for measuring pH in concrete: A review." Construction and Building Materials 105: 176-188.
    [3] Berger, R., Young, J. and Leung, K. (1972). "Acceleration of hydration of calcium silicates by carbon dioxide treatment." Nature Physical Science 240(97): 16-18.
    [4] Bonen, D. and Sarkar, S. L. (1995). "The effects of simulated environmental attack on immobilization of heavy metals doped in cement-based materials." Journal of Hazardous Materials 40(3): 321-335.
    [5] Chang, C.F. and Chen, J.W. (2006). "The experimental investigation of concrete carbonation depth." Cement and Concrete Research 36(9): 1760-1767.
    [6] Cui, H., Tang, W., Liu, W., Dong, Z. and Xing, F. (2015). "Experimental study on effects of CO2 concentrations on concrete carbonation and diffusion mechanisms." Construction and Building Materials 93: 522-527.
    [7] Drouet, E., Poyet, S., Le Bescop, P., Torrenti, J.M. and Bourbon, X. (2019). "Carbonation of hardened cement pastes: Influence of temperature." Cement and Concrete Research 115: 445-459.
    [8] Elsalamawy, M., Mohamed, A. R. and Kamal, E. M. (2019). "The role of relative humidity and cement type on carbonation resistance of concrete." Alexandria Engineering Journal 58(4): 1257-1264.
    [9] Harrisson, A. M. (2019). Chapter 4 - Constitution and Specification of Portland Cement. "Lea's Chemistry of Cement and Concrete (Fifth Edition). " Hewlett P. C. and Liska, M., Butterworth-Heinemann: 87-155.
    [10] Jerga, J. (2004). "Physico-mechanical properties of carbonated concrete." Construction and Building Materials 18(9): 645-652.
    [11] Lange, N. A. and Dean, J. A. (1973). "Lange's handbook of chemistry." Mcgraw-Hill, INC., University of Michigan.
    [12] Liu, L., Ji, Y., Gao, F., Zhang, L., Zhang, Z. and Liu, X. (2021). "Study on high-efficiency CO2 absorption by fresh cement paste." Construction and Building Materials 270: 121364.
    [13] Maries, A. (1985). "The activation of Portland cement by carbon dioxide." Conference in Cement and Concrete Science, Institute of Materials, Oxford, UK.
    [14] Mindess, S., Young F. and Darwin D. (2003). "Concrete (2nd edition)." Prentice Hall, New York, 585.
    [15] Mohammed, A. and Abdullah, A. (2018). "Scanning electron microscopy (SEM): A review." Proceedings of the 2018 International Conference on Hydraulics and Pneumatics—Hervex, Romania.
    [16] Molahid, V. L. M., Mohd Kusin, F., Syed Hasan, S. N. M., Ramli, N. A. A. and Abdullah, A. M.(2022). "CO2 sequestration through mineral carbonation: effect of different parameters on carbonation of Fe-rich mine waste materials." Processes 10(2): 432.
    [17] Monkman, S. and MacDonald, M. (2016). "Carbon dioxide upcycling into industrially produced concrete blocks." Construction and Building Materials 124: 127-132.
    [18] Monkman, S., MacDonald, M., Hooton, R. D. and Sandberg, P. (2016). "Properties and durability of concrete produced using CO2 as an accelerating admixture." Cement and Concrete Composites 74: 218-224.
    [19] Olajire, A. A. (2013). "A review of mineral carbonation technology in sequestration of CO2." Journal of Petroleum Science and Engineering 109: 364-392.
    [20] Rubin, E. and De Coninck, H. (2005). "IPCC special report on carbon dioxide capture and storage." UK: Cambridge University Press. TNO: Cost Curves for CO2 Storage, Part 2: 14.
    [21] Slegers, P. A. and Rouxhet, P. G. (1976). "Carbonation of the hydration products of tricalcium silicate." Cement and Concrete Research 6(3): 381-388.
    [22] Song, Y., Jun, S., Na, Y., Kim, K., Jang, Y. and Wang, J. (2023). "Geomechanical challenges during geological CO2 storage: A review." Chemical Engineering Journal 456: 140968.
    [23] Svensson, R., Odenberger, M., Johnsson, F. and Strömberg, L.(2004). "Transportation systems for CO2––application to carbon capture and storage." Energy Conversion and Management 45(15): 2343-2353.
    [24] Valcuende, M. and Parra, C. (2010). "Natural carbonation of self-compacting concretes." Construction and Building Materials 24(5): 848-853.
    [25] Warren, B. E. (1990). "X-ray Diffraction", Courier Corporation., North Chelmsford.
    [26] Ye, G. (2003). "Carbon dioxide uptake by concrete through early-age curing.", Master Thesis, Civil Engineering, McGill University.
    [27] CNS 1010 (2005),水硬性水泥墁料抗壓強度檢驗法(用50mm或2in,立方體試體),中華民國國家標準,經濟部標準檢驗局。
    [28] CNS 3655 (2020),水硬性水泥可塑稠性水泥漿及墁料之機械拌合法,中華民國國家標準,經濟部標準檢驗局。
    [29] 肖佳、勾成福 (2010),"混凝土碳化研究综述。" 混凝土(1):40-44。
    [30] 卓成剛、劉秀慧 (2017),"CO2 海洋封存技術國內外研究進展與啟示",安全與環境工程 24(5):84-89。
    [31] 洪正宗、許世雄、王淑麗 (2010),"二氧化碳捕獲技術現況及發展”,石油季刊 46(3):35-47。
    [32] 洪正宗、許世雄、蔡銘璋、陳孟宏、沈宏俊 (2011),"富氧燃燒二氧化碳捕獲技術發展探討”,石油季刊 47(3):19-30。
    [33] 徐恆文、柳萬霞、黃欽銘 (2012),"鈣迴路捕獲 CO2 技術的展望與機會”,鑛冶: 中國鑛冶工程學會會刊 56(2):13-20。
    [34] 馬迪祥 (2020),"添加二氧化碳於新拌混凝土與氫氧化鈣碳封存技術之研究",碩士論文,土木工程系,國立台灣大學。
    [35] 陳姵如 (2012),"利用蛇紋石進行二氧化碳礦化封存研究",碩士論文,資源工程所,國立台北科技大學。
    [36] 曾小平、吳冰、江山、鄧雪蓉 (2010),"碳酸鈣在高溫條件下的變化過程分析”,廣東化工 37(5):70-72。
    [37] 黃兆龍 (1999),"混凝土性質與行為",詹氏書局,台北市。
    [38] 黃欽銘、柳萬霞、陳旺、陳瑞燕、陳威丞、週揚震、張育誠、張文振、溫增文、徐恆文 (2016),"鈣循環二氧化碳捕獲試驗廠實驗測試結果”,燃燒季刊(95):51-64.
    [39] 蔡媗卉 (2020),"碳化含爐石粉水泥砂漿之氯離子分布研究",碩士論文,營建工程系,國立台灣科技大學。
    [40] 鄧嘉倫 (2016),"新拌混凝土碳儲存技術之初步研究",碩士論文,營建工程系,朝陽科技大學。
    [41] 蕭宛瑄 (2018),"二氧化碳養護對高強度透水混凝土性質之影響",碩士論文,土木工程系,國立中央大學。

    無法下載圖示 全文公開日期 2028/08/25 (校內網路)
    全文公開日期 2028/08/25 (校外網路)
    全文公開日期 2028/08/25 (國家圖書館:臺灣博碩士論文系統)
    QR CODE