簡易檢索 / 詳目顯示

研究生: 鄭家誠
Jia-Cheng Cheng
論文名稱: 應用電流失真功率於交流電路串聯電弧故障檢測與FPGA晶片設計
Application of Current Distortion Power for Detection of Series Arc Fault on AC Circuit and FPGA-Based Chip Design
指導教授: 吳啟瑞
Chi-Jui Wu
口試委員: 莊永松
Yung-Sung Chuang
辜志承
Jyh-Cherng Gu
連國龍
Kuo-Lung Lian
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 113
中文關鍵詞: 電流失真功率決策樹類神經網路電弧檢測FPGA
外文關鍵詞: Current distortion power, Decision Tree, Neural Network, Arc-Fault Detection, FPGA
相關次數: 點閱:408下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文藉由電弧故障檢測平台針對線路中供應不同特性的家電負載進行實驗,使用快速傅立葉轉換計算非正弦波視在功率中包含的電壓失真功率、電流失真功率及諧波視在功率,並且分析線路電流之時域及頻域特性。經過比較後,電流失真功率較適合作為判斷電弧發生之特徵向量。本文運用離散小波轉換結合高頻能量及電流失真功率,組合出四種特徵向量。利用這四種特徵向量於決策樹檢測法測試,最後再將測試結果錯誤率最低的特徵向量與倒傳遞類神經檢測法進行比較。由測試結果顯示,決策樹檢測法錯誤率最低。因此,以FPGA實現決策樹檢測方法,進行線路正常運轉、串聯電弧故障及發生開關電弧的測試,並與商用電弧故障斷路器的檢測結果相比,驗證本文所提出的電弧故障檢測方法之可行性。


    In this thesis, the arc fault experiment platform is used to conduct experiments on household appliances with different characteristics in the line. The fast Fourier transform (FFT) is used to calculate the voltage distortion power, current distortion power and harmonic apparent power, which are composed of non-sinusoidal apparent power components. They are compared to reveal and analyze the time domain and frequency domain characteristics of line current waveforms. It is shown that the current distortion power is more suitable as the characteristic vector for judging the arc faults. The discrete wavelet transform (DWT) is also used in this thesis to obtain high frequency component energy, which combines current distortion power to produce four characteristic vectors. Four characteristic vectors are tested by using the decision tree. Finally, the characteristic vector with the lowest error rate in the test results is compared with the method of the back propagation neural network. From the test results, the decision tree detection method has the lowest error rate. Therefore, detection tree method is implement on FPGA. It is tested for the line under normal operation, series arc fault, and switching arc. Compared with the arc-fault circuit interrupter (AFCI), the test results verify the feasibility of the arc fault detection method proposed in this thesis.

    摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VIII 表目錄 XI 第一章 緒論 1 1.1研究背景與動機 1 1.2文獻探討 2 1.3研究內容 3 1.4論文架構 4 第二章 電弧故障特性與實驗設備 6 2.1前言 6 2.2電弧故障 6 2.2.1電弧 6 2.2.2串聯電弧故障特性 7 2.3電弧故障實驗設備 9 2.3.1電弧故障斷路器 9 2.3.2實驗平台 10 2.3.3量測儀器 11 2.3.4串聯電弧故障產生機台 12 2.4線路量測與商用AFCI測試 13 2.4.1正常運轉實驗 14 2.4.2串聯電弧故障實驗 15 2.4.3開關電弧實驗 16 2.5快速傅立葉分析串聯電弧故障 17 2.5.1電力量與負載功率特性 17 2.5.2頻域特性 20 2.6小結 23 第三章 串聯電弧故障檢測方法 24 3.1前言 24 3.2傅立葉轉換 24 3.2.1離散傅立葉轉換 25 3.2.2快速傅立葉轉換 26 3.3小波轉換 27 3.3.1離散小波轉換 28 3.4小波多層解析 29 3.4.1高頻能量 32 3.4.2電流失真功率 32 3.5決策樹檢測法 33 3.5.1決策樹簡介 33 3.5.2決策樹訓練流程 34 3.5.3判斷方法 36 3.5.4電弧判斷結果 38 3.6倒傳遞類神經檢測法 45 3.6.1倒傳遞類神經簡介 45 3.6.2倒傳遞類神經訓練流程 45 3.6.3判斷方法 48 3.6.4電弧判斷結果 49 3.7小結 52 第四章 使用FPGA進行電弧故障檢測 53 4.1前言 53 4.2FPGA簡介 53 4.3FPGA硬體開發平台 55 4.4FPGA設計流程 56 4.5FPGA電弧故障檢測模組 58 4.5.1鮑率產生器 61 4.5.2 UART接收控制模組 62 4.5.3封包組合模組 62 4.5.4檢測法測試模組 63 4.6小結 64 第五章 串聯電弧故障檢測結果 65 5.1前言 65 5.2各負載條件測試 65 5.2.1負載條件一:吹風機 67 5.2.2負載條件二:電鍋 71 5.2.3負載條件三:15顆省電燈泡 75 5.2.4負載條件四:24顆LED燈泡與10盞LED燈管 79 5.2.5負載條件五:電鍋與100μF電容 83 5.2.6負載條件六:5顆省電燈泡與電風扇 87 5.3小結 90 第六章 結論與未來研究方向 91 6.1結論 91 6.2未來研究方向 92 參考文獻 93

    [1] 內政部消防署,「103-108年全國火災次數起火原因及火災損失統計表」,https://www.nfa.gov.tw/cht/index.php
    [2] Arc-Fault Circuit Interrupters, UL Standard 1699-2008, 2008.
    [3] National Fire Protection Association (NFPA), “Home Electrical Fires,” https://www.nfpa.org/-/media/Files/News-and-Research/Fire-statistics-and-reports/US-Fire-Problem/Fire-causes/osHomeElectricalFires.pdf
    [4] K. Zeng, L. Xing, Y. Zhang, and L. Wang, “Characteristics analysis of AC arc fault in time and frequency domain,”2017 Prognostics and System Health Management Conference (PHM-Harbin),Harbin,China,pp.1-5, July, 2017.
    [5] 曾元超,「防範住家電器火災的新技術」,台電月刊,第549期,第26-31頁,2008。
    [6] P. Muller, S. Tenbohlen, R. Maier, and M. Anheuser, “Characteristics of series and parallel low current arc faults in the time and frequency domain,”2010 Proceedings of the 56th IEEE Holm Conference on Electrical Contacts,SC,USA, pp. 1-7, October, 2010.
    [7] M.A.Abdulrachman, E.Prasetyono, D.O.Anggriawan, and A.Tjahjono,“Smart detection of AC series arc fault on home voltage line based on fast fourier transform and artificial neural network,”2019 International Electronics Symposium (IES), Surabaya, Indonesia , pp. 439-445, September, 2019.
    [8] C. Hong, C. Xiaojuan, X. Wei, and W. Cong,“Short-time fourier transform based analysis to characterization of series arc fault,”2009 2nd International Conference on Power Electronics and Intelligent Transportation System (PEITS), Shenzhen, China, pp. 185-188, December, 2009.
    [9] 趙尚程、張認成、杜建華、楊凱、潘冷,「採用小波變換的光伏串聯電弧故障檢測」,華僑大學學報,第38卷,第1期,第7-12頁,2017。
    [10] 劉曉明、趙洋、曹雲東、侯春光、王麗君,「基於小波變換的交流系統串聯電弧故障診斷」,電工技術學報,第29卷,第1期,第10-17頁,2014。
    [11] C.H. Kim, H. Kim, Y.H. Ko, S.H. Byun, R. Aggarwal, and A.T. Johns,“A novel fault-detection technique of high-impedance arcing faults in transmission lines using the wavelet transform,”IEEE Transactions on Power Delivery ,vol. 17, no. 4, pp. 921-929, October, 2002.
    [12] R. Zhang and Z. Song,“Arc fault detection method based on signal energy distribution in frequency band,”2012 Asia-Pacific Power and Energy Engineering Conference, Shanghai, China ,pp. 1-4, March 2012.
    [13] C. E. Restrepo,“Arc fault detection and discrimination methods,” Electrical Contacts-2007 Proceedings of the 53rd IEEE Holm Conference on Electrical Contacts, PA, USA, pp. 115-122, September ,2007.
    [14] C. Xiaochen, W. Li, S. Qiangang, and M. Zhen,“AC arc fault detection based on Mahalanobis Distance,”2012 15th International Power Electronics and Motion Control Conference (EPE/PEMC), Novi Sad, Serbia ,pp. DS3b. 13-1-DS3b. 13-6, September, 2012.
    [15] Y. Zhao, X. Zhang, Y. Dong, and W. Li,“Characteristics analysis and detection of AC arc fault in SSPC based on wavelet transform,”2016 IEEE International Conference on Aircraft Utility Systems (AUS), Beijing, China,pp. 476-481, October ,2016.
    [16] 鄭惠翔,「低壓電弧故障斷路器用訊號檢測」,碩士學位論文,國立臺灣科技大學,臺北,2010。
    [17] 王奕捷,「低壓線路串聯電弧故障時域及頻域分析與檢測」,碩士學位論文,國立臺灣科技大學,臺北,2012。
    [18] 洪晨軒,「低壓屋內配線串聯電弧故障檢測與辨識」,碩士學位論文,國立臺灣科技大學,臺北,2013。
    [19] 史明哲,「應用模糊理論與類神經網路於低壓線路電弧故障檢測」,碩士學位論文,國立臺灣科技大學,臺北,2015。
    [20] 傅祖勳,「電力品質資料分析與壓縮」,博士學位論文,國立臺灣科技大學,臺北,2002。
    [21] IEEE Standard Definitions for the Measurement of Electric Power Quantities Under Sinusoidal, Nonsinusoidal, Balanced, or Unbalanced Conditions, IEEE Standard 1459-2010, March ,2010.
    [22] NFPA 921 Guide for Fire and Explosion Investigations, National Fire Protection Association, 2011.
    [23] G. D. Gregory and G. W. Scott,“The arc-fault circuit interrupter, an emerging product,”1998 IEEE Industrial and Commercial Power Systems Technical Conference. Conference Record. Papers Presented at the 1998 Annual Meeting (Cat. No. 98CH36202), Edmonton,Canada, pp. 48-55, October ,1998.
    [24] G. D. Gregory, K. Wong, and R. F. Dvorak,“More about arc-fault circuit interrupters,”IEEE Transactions on Industry Applications, vol. 40, no. 4, pp. 1006-1011, October, 2003.
    [25] K. J. Lippert and T. A.Domitrovich“AFCIs—From a standards perspective,”IEEE Transactions on Industry Applications ,vol. 50, no. 2, pp. 1478-1482, March ,2013.
    [26] 劉鈺韋,「運用小波轉換與類神經網路檢測屋內低壓線路串聯電弧故障」,博士學位論文,國立臺灣科技大學,臺北,2015。
    [27] 董長虹、高志、於嘯海,「小波分析工具箱原理與應用」,國防工業出版社,2004。
    [28] W. G. Morsi and M. E. El-Hawary, “Reformulating Three-Phase Power Components Definitions Contained in the IEEE Standard 1459–2000 Using Discrete Wavelet Transform,” IEEE Transactions on Power Delivery, vol. 22, no. 3, pp. 1917-1925, June ,2007.
    [29] S. Mallat, A Wavelet Tour of Signal Processing, Academic Press, San Diego, third edition, 2009.
    [30] W. G. Morsi and M. E. El-Hawary, “Reformulation power components definitions contained in the ieee standard 1459-2000 using discrete wavelet transform,” IEEE Transaction on Power Delivery, vol. 22, no. 3, July ,2007.
    [31] 翁政雄、洪令莊、呂培豪、陳學瀚、郭家佑、施博惟、謝孟哲,「應用決策樹於心臟病預測之研究」,第19屆資訊管理暨實務研討會,台中,2012。
    [32] J. R. Quinlan, C4. 5: programs for machine learning. Elsevier, 2014.
    [33] 高鴻文、林詩偉、萬書言,「運用決策樹演算法於護理人員離職預測」,醫療資訊雜誌,第29卷,第4期,第15-29頁,2012。
    [34] 葉怡成,「類神經網路應用與實作」,儒林圖書公司,2009。
    [35] 林灶生、劉紹漢,「Verilog FPGA晶片設計」,全華圖書,2004。
    [36] 徐文波、田耘,「Xilinx FPGA開發實用手冊」,佳魁資訊,2015。
    [37] 鍾崇訓,「使用FPGA晶片設計之電壓閃爍計算」,碩士學位論文,國立台灣科技大學,臺北,2010。
    [38] 薛小剛、葛毅敏,「Xilinx ISE 9.X FPGACPLD設計指南」,人民郵電,2007。
    [39] ML505/506/507 Overview and Setup, Xilinx, 2008.
    [40] 陸瑞強、廖玉評,「系統晶片設計使用QuartusII」,全華圖書,2008。

    無法下載圖示 全文公開日期 2025/07/08 (校內網路)
    全文公開日期 2025/07/08 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE