簡易檢索 / 詳目顯示

研究生: 李政勳
Cheng-Hsun Li
論文名稱: 整合球形全向攝影機與雷射測距儀的室內三維場景重建
3D Model Reconstruction of Indoor Environment by Spherical Camera and Laser Range Finder
指導教授: 鄧惟中
Wei-Chung Teng
口試委員: 范欽雄
Chin-Shyurng Fahn
項天瑞
Tien-Ruey Hsiang
學位類別: 碩士
Master
系所名稱: 電資學院 - 資訊工程系
Department of Computer Science and Information Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 135
中文關鍵詞: 場景重建雷射測距儀球形全向攝影機自走車機器人模型拼貼
外文關鍵詞: reconstruction, LMS-200, Ladybug2, Pioneer-3DX, registration
相關次數: 點閱:183下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本研究目的為利用自走車機器人在室內環境中擷取周圍場景資料,以建構自走車機器人目前所處之環境的三維紋理貼圖模型。我們成功整合自走車機器人Pioneer 3-DX、雷射測距儀LMS-200、球形全向攝影機Ladybug2完成包含自動擷取三維建模資料、自動建立三維模型、自動紋理貼圖、自動拼貼多位置模型功能之系統。本研究利用自走車機器人所搭載之球形全向攝影機快速擷取周圍環境之環場全景圖,接著讓自走車機器人自轉360度,同時利用搭載之雷射測距儀快速掃描整個周邊環境以擷取三維點雲資料。經由點雲資料三角網格化之演算法,將場景網格模型繪製於基於OpenGL所設計的三維影像顯示系統,並且透過所提出的對於球形全向攝影機與雷射測距儀之校正方法,將環場全景圖之紋理貼合於場景之網格模型上。在擷取多個建模資料後,我們亦透過所提出的拼貼多位置三維模型演算法,將各位置之三維模型拼貼為單一模型,此方法包含基於法向量群偏轉角度之細部校正演算法,校正各位置模型的偏轉角度;以及另一個所提出的基於點集合偏移距離計算之細部校正演算法,校正各位置模型的偏移距離。此外,我們所提出之拼貼多位置三維模型演算法的時間複雜度為O(nlogn),而迭代最近點(Iterative Closest Point, ICP)演算法的時間複雜度為O(n^2),兩者比較後得知,本研究所提出的拼貼多位置三維模型演算法比ICP演算法在效能上更為優異。


The purpose of this research is to construct the three-dimensional model including texture of environment utilizing mobile robot in indoor environment. We have integrated mobile robot (Pioneer 3-DX), laser range finder(LMS-200) and spherical camera(Ladybug2) to develop a complete system supporting automatic capturing three-dimensional model data, automatic 3D model construction, automatic texture mapping, and automatic multi-field 3D model registration functions. In this system, by using spherical camera, the mobile robot can capture panoramic picture of its surrounding environment. After this, the robot rotates 360 degree and simultaneously captures 3D point cloud of the environment by utilizing laser range finder. With the algorithm of triangulating point cloud, the proposed system renders the 3D mesh on OpenGL-based rendering module, and mapping the panoramic image to 3D mesh via the proposed calibration method, which performs calibration between the spherical camera and the laser range finder. After capturing sets of data from few adjacent positions, we developed an algorithm to register multi-field 3D model and to merge 3D models of different positions into a integrated one. This method includes a rotation calibration algorithm based on normalize vectors set, and a translation calibration algorithm based on point set, which also calibrates translation distance. In addition, we compare the multi-field 3D model algorithm with ICP (Iterative Closest Point) algorithm. According to our analysis, the complexity of the proposed algorithm is O(nlogn) and the complexity of ICP algorithm is O(n^2). Thus, the proposed algorithm has higher performance.

摘要 I Abstract II 目錄 IV 圖目錄 VII 表目錄 XII 演算法目錄 XIII 第1章 緒論 1 1.1前言 1 1.2研究背景與動機 1 1.3研究目的與方法 3 1.4論文架構 3 第2章 文獻探討與背景技術 5 2.1相關擷取點雲資料方法 5 2.1.1雷射測距儀擷取平面與地面平行且前進擷取點雲 5 2.1.2雷射測距儀裝置於兩個自由度之雲台模組擷取點雲 5 2.1.3雷射測距儀擷取平面與地面垂直且前進擷取點雲 6 2.1.4雷射測距儀裝置於旋轉平台擷取點雲 6 2.1.5多雷射測距儀擷取方式 8 2.2多位置三維模型拼貼方法 9 2.3環場影像攝影機 11 2.4文獻總結 13 第3章 研究方法 14 3.1系統架構 14 3.2伺服端與客戶端的網路資料傳輸模組設計 15 3.3伺服端環場全景圖擷取影像模組設計 17 3.3.1多方位場景圖拼貼 18 3.3.2 球形全景影像投影至平面的方式 20 3.3.3 環場全景圖取像 22 3.4伺服端三維點雲資料擷取模組設計 22 3.4.1三維點雲資料擷取系統 22 3.4.2三維點雲資料擷取程式之流程架構 25 3.5客戶端機器人動作控制模組設計 26 3.6客戶端三角網格模型建立模組設計 28 3.6.1建立點雲資料於三維笛卡兒座標系之世界座標 28 3.6.2基於紋理貼圖之點雲資料轉換 31 3.6.3點雲資料三角網格化 32 3.6.4計算三角網格之各點法向量 33 3.6.5修正錯誤三角網格 34 3.7環場全景圖與三維網格模型對應校正 37 3.7.1棋盤格校正板 37 3.7.2雷射光束電子量角器 37 3.7.3空間位置之角度量測方式 38 3.7.4校正距離 39 3.7.5校正程序 40 3.7.6修正計算視野角度後之誤差 44 3.7.7環場全景圖與三維網格模型校正前後之比較 46 3.8網格紋理貼圖模組設計 48 3.8.1網格模型與環場全景圖之X軸方向對齊校正 48 3.8.2網格模型與環場全景圖之Y軸方向對齊校正 49 3.8.3裁剪環場全景圖底部球形非視野涵蓋的區域 53 3.8.4計算紋理貼圖之貼圖向量 53 3.8.5網格紋理貼圖結果 57 3.9客戶端擷取多位置建模資料模組設計 59 3.9.1自動擷取多位置建模資料流程 60 3.9.2單一場景下自走車機器人擷取資料的路徑安排 61 3.9.3記錄機器人移動路徑資訊 64 3.9.4基於法向量群校正方向偏轉角度 64 3.10客戶端拼貼多位置三維模型模組設計 71 3.10.1自走車機器人偏轉問題 71 3.10.2自走車機器人打滑誤差 72 3.10.3拼貼多位置三維模型之流程 73 3.10.4基於電子羅盤校正三維模型轉動角度 74 3.10.5裁剪三維模型 75 3.10.6基於法向量群偏轉角度校正 78 3.10.7基於點集合偏移距離校正 81 第4章 系統實驗與結果分析 85 4.1系統建置 85 4.2實驗系統 86 4.2.1 Pioneer 3-DX 86 4.2.2 SICK LMS-200 Laser Rangefinder 87 4.2.3 Point Grey Ladybug2 87 4.2.4 機構設計 88 4.3實驗方法 89 4.4系統控制程式 91 4.4.1 伺服端Pioneer 控制程式 92 4.4.2伺服端Ladybug 控制程式 92 4.4.3 客戶端使用者控制程式 93 4.5實驗場景 95 4.6實驗步驟 96 4.6.1單一位置模型建立 96 4.6.2多位置模型建立與拼貼 103 4.6.3有障礙物的複雜場景多位置拼貼模型建立 105 4.7實驗結果與分析 107 4.7.1環境模型 107 4.7.2演算法執行時間 108 4.7.3演算法效能比較 112 第5章 結論與未來工作 118 5.1結論 118 5.2未來工作 119 參考文獻 120

[1] “Google Trekker,” 2013, http://www.google.com/help/maps/streetview/mobile/learn/detail/trekker.html#
[2] P. Henry, M. Krainin, E. Herbst, X. Ren, D. Fox, “RGB-D mapping: Using Kinect-style depth cameras for dense 3D modeling of indoor environm- ents, ”The International Journal of Robotics Research, Vol. 31, No. 5, pp. 647-663, 2012.
[3] A. Banno, T. Masuda, T. Oishi, K. Ikeuchi, “Flying Laser Range Sensor for Large-Scale Site-Modeling and Its Applications in Bayon Digital Archival Project, ” International Journal of Computer Vision, Vol. 78, Issues 2-3, pp. 207-222, 2008.
[4] D. Chrysostomou, A. Gasteratos, L. Nalpantidis, G. C. Sirakoulis, “Multi-view 3D scene reconstruction using ant colony optimization techniques, ” Measurement Science & Technology, Vol. 23,No. 11, 2012.
[5] 楊雄壹, ”利用自走車機器人搭載雷射測距儀快速建立三維室內環境模型的方法”, 碩士論文,國立台灣科技大學, 2011.
[6] P. Biber , H. Andreasson , T. Duckett , A. Schilling , “3D modeling of indoor environments by a mobile robot with a laser scanner and panoramic camera, ” in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Vol. 4, pp. 3430-3435, 2004.
[7] H. Andreasson, A. J. Lilienthal, “6D scan registration using depth-interpolated local image features, ” Robotics and Autonomous Systems, Vol. 58, Issue 2, pp. 157-165, 2010.
[8] Y. Bok, Y. Hwang, I. S. Kweon, “Accurate Motion Estimation and High-Precision 3D Reconstruction by Sensor Fusion,” in Proceedings of 2007 IEEE International Conference on Robotics and Automation, Roma, pp. 4721-4726, 2007.
[9] O. Wulf, B. Wagner, “Fast 3D-scanning methods for laser measurement systems, ” in Proceedings of International Conference on Control Systems and Computer Science(CSCS14), pp. 2-5, 2003.
[10] S. Fleck , F. Busch, P. Biber, W. Straser , “Graph cut based panoramic 3D modeling and ground truth comparison with a mobile platform -The Wagele, ” Image and Vision Computing, Vol. 27, Issues 1-2, pp. 141-152, 2009.
[11] M. Sheehan, A.Harrison, P. Newman, “Self-calibration for a 3D laser, ” International Journal of Robotics Research archive, Vol. 31, Issue 5, pp. 675-687, 2012.
[12] P. J. Besl, N. D. Mckay, “A Method for Registration of 3-D Shapes, ” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 14, No. 2, 1992.
[13] A. E. Johnson, S.B. Kang, “Registration and integration of textured 3D data, ” Image and Vision Computing, Vol. 17, Issue 2, pp. 135-147, 1999.
[14] “Panoramic Vision,” 2013, http://homepages.laas.fr/simon/eden/rover/perception/pano.php
[15] S. Teller, “Automated urban model acquisition: Project rationale and status,” in Image Understanding Workshop, pp. 455-462, 1998.
[16] “Omnidirectional camera” 2013, http://vstone.co.jp/products/sensor_camera/download/omni.pdf
[17] K. H. Tan, H. Hua, N. Ahuja, “Multiview Panoramic Cameras Using Mirror Pyramids,” IEEE Transactions on Pattern Analysis and Machine Intelligence Archive, Vol. 26, Issue 7, pp. 941-946, 2004.
[18] “Point Gray innovation in imaging,” 2013, http://ww2.ptgrey.com/PTGREY_Complete_Catalog.pdf
[19] “Pioneer 3-DX,” 2013, http://www.mobilerobots.com/researchrobots/pioneerp3dx.aspx
[20] “Laser Range Finder LMS200,” 2013, http://www.sick.com.tw/pdf/DIVO5/LMS2xx.pdf
[21] Point Grey Research, “Overview of the Ladybug image stitching process,” Technical Application Note TAN2008010, Revised June 19, 2013.
[22] T. Jost, H. Heinz, “Fast ICP algorithms for shape registration,” Lecture Notes in Computer Science, Vol.2449, pp.91-99, 2002.

QR CODE