簡易檢索 / 詳目顯示

研究生: 周延
Yen Chou
論文名稱: 不同型式之特殊邊界構材於低矮剪力牆往復載重行為研究
Cyclic Behavior of RC Squat Wall with Different Arrangements of Special Boundary Elements
指導教授: 鄭敏元
Min-Yuan Cheng
口試委員: 黃世建
Shyh-Jiann Hwang
邱建國
Chien-Kuo Chiu
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 142
中文關鍵詞: 邊界構材低矮型剪力牆高強度
外文關鍵詞: boundary element, wall, low-rise, squat
相關次數: 點閱:147下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究根據過去試驗結果(Cheng 等學者, 2016、Wibowo , 2017),以已測試
    之兩組試體(分別為試體 H60 與 HHH_B_1.0)為基礎,規劃並測試另外三組剪力
    跨距比皆為 1.0(hw⁄ℓ௪ = 1.0)但不同邊界構材型式之低矮剪力牆試體,目的欲探
    討低矮剪力牆於往復載重行為之影響。除試體HHH_B_1.0 (Wibowo , 2017)使用
    高強度混凝土與鋼筋外,所有試體之面內剪應力需求(Vmpr)一致,即試體於牆底
    發展可能彎矩強度Mpr所對應的正規化剪應力值,約為10ටf'c(psi) or 0.83ටf'c(MPa),
    試體 HHH_B_1.0 因使用高強度混凝土使面內剪應力略微降低,約為約為
    7.44ටf'c (psi) 或 0.62ටf'c(MPa)。根據實驗結果所得之結論顯示,根據牆底發展之
    撓曲強度所對應剪力,能夠準確地預估試體的最大側向力。另一方面,使用槓鈴
    形斷面能夠提升試體在過最大側向力後減緩力量的損失,使試體達更長遠的變形,
    於此之上,使用抗壓強度約83 MPa (12 ksi)之高強度混凝土與降伏強度超過827
    MPa (120 ksi)之高強度鋼筋更加提高試體之變形能力。


    According to specimen H60 (Cheng, et al.) and HHH_B_1.0 (Wibowo , 2017) were test in the past. An experimental program consisting of three specimens were conducted to evaluate effects of different arrangements of boundary elements on cyclic responses of reinforced concrete (RC) squat wall with a shear span-to-length ratio, hw⁄ℓ௪ , of 1.0. Except specimen HHH_B_1.0 (Wibowo , 2017) using high-strength concrete and steel, all test specimens are designed to have shear stress demand associated with the development of probable flexural strength approaching 10ටf'c(psi) or 0.83ටf'c(MPa). Shear stress demand in specimen HHH_B_1.0 was slightly reduced due to the use of high-strength concrete. Test results show that peak strengths of all test specimens can be satisfactorily predicted by nominal flexural strength. Specimen deformation capacity is more effectively increased by the use of barbell shape boundary elements at ends of the wall. Specimen deformation capacity is further increased when high-strength materials including concrete with cylinder strength of around 12 ksi (83 MPa) and steel with tested yield stress exceeding 120 ksi (827 MPa) are used.

    摘要................................................................................................................................ I Abstract ........................................................................................................................ V 目錄............................................................................................................................. VI 圖目錄......................................................................................................................... IX 表目錄........................................................................................................................ XII 第一章 序論 ................................................................................................................. 1 1.1 研究背景........................................................................................................ 1 1.2 研究動機........................................................................................................ 4 1.3 研究目的及方法............................................................................................ 4 1.4 研究內容架構................................................................................................ 5 第二章 文獻回顧 ......................................................................................................... 7 2.1 過去實驗結果摘要........................................................................................ 7 2.1.1 Salonikios 等學者 (1999) ................................................................... 7 2.1.2 Kuang 與Ho (2008) ............................................................................. 9 2.1.3 Taleb 等學者 (2014) .......................................................................... 11 2.1.4 Baek 等學者 (2015) ........................................................................... 13 2.1.5 Luna 等學者 (2015) ........................................................................... 15 2.1.6 Cheng 等學者 (2016) ....................................................................... 17 2.2 剪力強度預估模型...................................................................................... 18 2.2.1 ACI 318-14 低矮剪力牆設計............................................................. 18 2.2.2 簡化軟化拉壓桿模型 (Hwang 等學者, 2001;Hwang 與Lee, 2002; Hwang 等學者, 2017) .................................................................................. 20 VII 第三章 測試規劃 ....................................................................................................... 27 3.1 試體設計概述.............................................................................................. 27 3.2 試體尺寸與配筋.......................................................................................... 29 3.2.1 剪力牆主試體.................................................................................... 29 3.2.2 頂部混凝土塊.................................................................................... 35 3.2.3 底部混凝土塊.................................................................................... 38 3.3 試體製作...................................................................................................... 40 3.4 試驗配置...................................................................................................... 42 3.5 試體測試程序.............................................................................................. 45 3.6 試驗量測裝置.............................................................................................. 46 3.6.1 外部量測............................................................................................ 46 3.6.2 鋼筋應變計........................................................................................ 49 3.6.3 裂縫寬度量測.................................................................................... 51 第四章 測試結果與討論 ........................................................................................... 53 4.1 材料測試結果.............................................................................................. 53 4.1.1 混凝土................................................................................................ 53 4.1.2 鋼筋.................................................................................................... 55 4.2 試體測試歷程.............................................................................................. 58 4.2.1 試體EB ............................................................................................. 59 4.2.2 試體3B .............................................................................................. 64 4.2.3 試體BB ............................................................................................. 69 4.2.4 測試歷程簡述與結果........................................................................ 76 4.3 測試摘要與討論.......................................................................................... 78 4.3.1 試體強度............................................................................................ 79 VIII 4.3.2 變形能力............................................................................................ 81 4.3.3 曲率.................................................................................................... 90 4.3.4 初始勁度............................................................................................ 91 4.3.5 應變計................................................................................................ 95 第五章 結論 ............................................................................................................. 103 參考文獻.................................................................................................................... 105 符號說明.................................................................................................................... 109 附錄 A 應變計讀數 .................................................................................................. 113 A.1 試體EB ..................................................................................................... 113 A.2 試體3B ...................................................................................................... 120 A.3 試體BB ..................................................................................................... 125

    ACI Committee 318, 2014, “Building Code Requirements for Structural Concrete
    and Commentary (ACI 318-14),” American Concrete Institute, Farmington Hills,
    Michigan, 519 pp.
    ASTM A370-17, 2017, “Standard Test Methods and Definitions for Mechanical
    Testing of Steel Products,” ASTM International, West Conshohocken, Pennsylvania,
    49 pp.
    Athanasopoulou, A.; and Parra-Montesinos, G. J., 2013, “Experimental Study on
    the Seismic Behavior of High-Performance Fiber-Reinforced Concrete Low-Rise
    Walls,” ACI Structural Journal, V. 110, No.5, Sep.- Oct., pp. 767-778.
    Barda, F.; Hanson, J. M.; and Corley, W. G., 1977, “Shear Strength of Low-Rise
    Walls with Boundary Elements,” ACI Special Publications, Reinforced Concrete in
    Seismic Zones, SP-53-8, pp.149-202.
    Cheng, M.–Y.; Hung, S.–H.; Lequesne, R. D.; and Lepage, A., 2016, “Earthquake-
    Resistant Squat Walls Reinforced with High Strength Steel,” ACI Structural Journal, V.
    113, No.5, Sep.- Oct., pp. 1065-1076.
    Escolano-Margarit, D.; Klenke, A.; Pujol, S.; Benavent-Climent, A., 2012,
    “Failure Mechanism of Reinforced Concrete Structural Walls with and without
    Confinement,” 15 World Conference on Earthquake Engineering, Sep., Lisbon,
    Portugal., pp. 1-10.
    106
    Hwang, S. –J.; Fang, W.–H.; Lee, H.–J.; and Yu, H.–W., 2001, “Analytical Model
    for Predicting Shear Strength of Squat Wall,” Journal of Structural Engineering, ASCE,Vol. 127, No. 1, Jan., pp. 43-50.
    Hwang, S. –J.; and Lee, H. –J., 2002, “Strength Prediction for Discontinuity
    Regions by Softened Strut-and-Tie Model,” Journal of Structural Engineering, ASCE,
    Vol. 128, No. 12, Dec., pp. 1519-1526.
    Hwang, S. –J.; Tsai, R. –J.; Lam W. –K.; and Moehle, J. P., 2017, “Simplification
    of Softened Strut-and-Tie Model for Strength Prediction of Discontinuity Regions,”
    ACI Structural Journal, V. 114, No. 5, Sep.- Oct., pp. 1239-1248.
    Kuang, J. S.; and Ho, Y. B., 2008, “Seismic Behavior and Ductility of Squat
    Reinforced Concrete Shear Walls with Nonseismic Detailing,” ACI Structural Journal,
    V. 105, No. 2, Mar.- Apr., pp. 225-231.
    Luna, B. N.; Rivera, J. P.; and Whittaker, A. S., 2015, “Seismic Behavior of Low-
    Aspect-Ratio Reinforced Concrete Shear Walls,” ACI Structural Journal, V. 112, No. 5,Sep.- Oct., pp. 593-604.
    Moehle, J. P.; Ghodsi, T.; Hooper, J. D.; Fields, D. C.; and Gedhada, R., 2011,
    “Seismic Design of Cast-in-Place Concrete Special Structural Walls and Coupling
    Beams: A Guide for Practicing Engineers,” NEHRP Seismic Design Technical Brief No.
    6, National Institute of Standards and Technology, U.S. Department of Commerce,
    107
    NIST GCR 11-917-11, 37 pp.
    Oesterle, R.B.; Fiorato, A.E.; and Corley, W. G.,1980, “Reinforcement Details for
    Earthquake-Resistant Structural Walls,” ACI Structural Journal, V. 2, No.12, Dec., pp.55-56.
    Paulay, T.; Priestley, M. J. N.; and Synge, A. J., 1982 “Ductility in Earthquake
    Resisting Squat Shearwalls,” ACI Journal, V. 79, No. 4, Jul.-Aug., pp. 257-269.
    Salonikios, N. T., Kappos, J. A., Tegos, A. I. and Penelis, G. G., 1999, “Cyclic
    Load Behavior of Low-Slenderness Reinforced Concrete Walls: Design Basis and Test
    Results.”, ACI Structural Journal, V. 96, No. 4, Jul.-Aug., pp. 649-660.
    Taleb, R.; Kono, S.; Tani, M.; and Sakashita, M., 2014, “Effect of End Region
    Confinement on Seismic Performance of RC Cantilever Walls,” Proceedings of the 10th
    National Conference in Earthquake Engineering, Earthquake Engineering Research
    Institute, Anchorage, Alaska, Jul., 11 pp.
    Wallace, J. W., and Moehle, J. P, 1992, “Ductility and Detailing Requirements of
    Bearing Wall Buildings.”, Journal of Structural Engineering, V. 118, No. 6, Jun., pp.1625-1644.
    Wallace, J. W., 1995, “Seismic Design of RC Structural Walls. Part I: New Code
    Format,” Journal of Structural Engineering, V. 121, No. 1, Jan., pp. 75-87.
    108
    Wallace, J. W.; and Orakcal, K., 2002, “ACI 318-99 provisions for seismic design
    of structural walls,” Structural Journal, V. 99, No. 4, Jul., pp. 499-508.
    Wallace, J. W.; Massone, L. M.; Bonelli, P.; Dragovich, J.; Lagos, R.; Lüders, C.;
    and Moehle J., 2012, “Damage and Implications for Seismic Design of RC Structural
    Wall Buildings,” Earthquake Spectra, V. 28, No. 1, Jun., pp. 281-299.
    Wibowo, L. S. B., 2017 “Strength and Deformation Capacity of High-Shear
    Demand RC Squat Wall using High-Strength Materials,” Ph.D. Dissertation,
    Department of Civil and Construction Engineering, University of Science and
    Technology, Taipei, Taiwan
    Wood, S. L., 1990, “Shear Strength of Low-Rise Reinforced Concrete Walls.” ACI
    Structural Journal, V. 87, No. 1, Jan.-Feb., pp. 99-107.
    Wood, S. L., 1991, “Performance of Reinforced Concrete Buildings during the
    1985 Chile Earthquake: Implications for the Design of Structural Walls,” Earthquake
    Spectra, EERI, V. 7, No. 4, pp. 607-638

    QR CODE