簡易檢索 / 詳目顯示

研究生: 吳景棠
Jing-Tang Wu
論文名稱: 熱裂解酚醛樹酯製備高強度碳材及其應用之研究
Study on Preparation of Highly-mechanical strength Carbon Materials by Thermal Cracking of Phenol-Formaldehyde Resin and Its Application
指導教授: 曾堯宣
Yao-Hsuan Tseng
口試委員: 顧洋
Young Ku
李豪業
Hao-Yeh Lee
陳士勛
Shih-Hsun Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 89
中文關鍵詞: 熱裂解程序酚醛樹酯活性碳食人魚酸纖維二醣
外文關鍵詞: Pyrolysis, Phenol-formaldehyde resin, Activated carbon, Piranha acid, Cellobiose
相關次數: 點閱:137下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 廢棄塑膠為急需減量之廢棄物,其種類眾多而處理程序也有所不同,本研究以熱裂解程序處理廢棄酚醛樹脂,將其轉化為酚醛碳球以及觸媒,達成資源化目的,研究工作可分為三部分:
    第一部分為製備碳基材。此部分以調整裂解溫度和裂解時間,找出製備酚醛碳球之最適化條件,並以BET、XRD、EA、FTIR、SEM與ASTM-D5757法等分析。第二部分為金屬-碳觸媒製備。此部分以實廠5wt%雙氧水之食人魚酸作為模擬半導體廠廢酸標的物,將酚醛碳球製備成金屬-碳觸媒,並搭配反應系統設計、流速、觸媒用量,可去除97%雙氧水,並可長期維持機械強度。第三部分為水解纖維二醣酸性觸媒可行性研究。此部分將酚醛碳球製備成磺酸根-碳觸媒,並與市售之Amberlyst-39及稀硫酸作比較,得知以製備之磺酸根-碳觸媒水解纖維二醣之葡萄糖最高產率為95.3%,顯示有實用化潛力。


    The plastic waste plastic was the major problem nowadays. There are many types of plastic waster and different treatment procedures. In this study, the phenolic-formaldehyde resin waste was converted to the phenolic-formaldehyde activated carbon (PF-AC) and catalyst via thermal pyrolysis process, which achieved the purpose of resource. This work could be divided into three parts:
    The first part was the preparation of carbon substrate. The optimum conditions for carbonization of phenolic-formaldehyde resin to PF-AC were obtained and analyzed by BET, XRD, EA, FTIR, SEM and ASTM-D5757 method. The metal-carbon catalyst was synthesized in the second part. The target was 5wt% H2O2 piranha solution to simulate the waste acid from semiconductor factory. 97% of degradation efficiency for 5wt%-H2O2 piranha acid was reached by redesigning reaction system, adjusting flow rate and amount of catalyst, which could maintain mechanical strength for a long time.The feasibility of hydrolysis of cellobiose over sulfonate-carbon catalyst was investigated in the third part. The PF-AC were modified with fuming sulfuric acid to be SO3H-carbon catalyst, which was compared with Amberlyst-39 and diluted sulfuric acid. The highest yield of glucose with using SO3H-carbon catalyst was found to 95.3%, showing the practical potential.

    摘要 ii ABSTRACT iii 圖目錄 vii 表目錄 ix 第一章 緒論 2 1.1前言 2 1.2酚醛樹酯 3 1.3研究動機與目的 5 第二章、理論基礎與回顧 6 2.1熱裂解 6 2.1.1熱裂解之簡介 6 2.1.2酚醛樹酯之熱裂解程序 8 2.2固體產物-碳黑 11 2.2.1碳黑之簡介 11 2.2.2碳黑之應用 11 2.3活性碳 13 2.3.1活性碳之簡介 13 2.3.2活性碳之製備 14 2.3.3活性碳之特性 16 2.3.4活性碳之再生程序 17 2.4碳材料之應用 19 2.4.1以活性碳降解食人魚酸中之過氧化氫 19 2.4.2製備金屬-碳觸媒吸附硫化氫 21 2.4.3製備磺酸根-碳觸媒水解纖維二醣 23 第三章 實驗方法與步驟 25 3.1實驗設計 25 3.2實驗藥品 27 3.3實驗設備與分析方法 28 3.3.1實驗設備 28 3.3.2分析儀器 29 3.3.3數據測量方法 30 3.4實驗步驟 35 3.4.1酚醛碳球製程 35 3.4.2金屬-碳觸媒製程 37 3.4.3磺酸根-碳觸媒製程 37 3.4.4金屬-碳觸媒降解食人魚酸之雙氧水 38 3.4.5磺酸根-碳觸媒水解纖維二醣 40 第四章 結果與討論 41 4.1 裂解參數對酚醛碳球之影響 41 4.1.1裂解溫度 41 4.1.2裂解時間 45 4.1.3酚醛碳球與實廠活性碳之規格比較 47 4.2 金屬-碳觸媒降解食人魚酸之雙氧水 49 4.2.1金屬-碳觸媒之特性 49 4.2.2金屬-碳觸媒處理食人魚酸之實驗參數 53 4.2.2.1流速效應 53 4.2.2.2觸媒用量 59 4.2.2.3雙氧水濃度效應 63 4.2.2.4觸媒再使用次數與原製程再生效果測試 67 4.3 磺酸根-碳觸媒水解纖維二醣程序 70 4.3.1磺酸根-碳觸媒之特性 70 4.3.2磺酸根-碳觸媒水解纖維二醣 72 4.4 成本&利潤評估 75 4.4.1金屬-碳觸媒vs.傳統批次加熱程序 75 第五章、結論與未來展望 77 5.1 結論 77 5.2未來展望 78 參考文獻 80

    [1.] 行政院環境保護署事業廢棄物申報及管理資訊系統. https://waste.epa.gov.tw/RWD/Statistics/?page=Year1

    [2.] 工業廢棄物清理與資源化資訊網.
    https://riw.tgpf.org.tw/

    [3.] 酚醛樹脂
    http://psdn.pidc.org.tw/ike/doclib/2003/2003doclib/2003ike31-0/2003ike31-0-307.asp

    [4.] 吳兆原, “丁酮熱裂解系統放大設計與最適化之研究”, 國立台灣科技大學化學工程研究所碩士論文, 2021.

    [5.] Renda CG, Bertholdo R. “Study of phenolic resin and their tendency for carbon graphitization.” Journal of Polymer Research. 2018;25(11).

    [6.] Jiang, Hai-chao, Jigang Wang, Shenqing Wu, Zhiqing Yuan, Zhongliang Hu, Ruo Mei Wu and Qilong Liu. “The pyrolysis mechanism of phenol formaldehyde resin.” Polymer Degradation and Stability 97 (2012): 1527-1533. The pyrolysis mechanism of phenol formaldehyde resin. Polymer Degradation and Stability. 2012;97(8):1527-33.

    [7.] A.A. Merchant and M.A. Petrich. “Pyrolysis of Scrap Tires and Conversion of Chars to Activated Carbon.” AIChE Journal, Vol. 39, pp.1370-1376, 1993.

    [8.] P.T. Williams, S. Besler and D.T. Taylor. ”The Pyrolysis of Automotive Tyres:The Influence of Temperature and Heating Rate on Product Composition.” Fuel, Vol. 69, pp.1474, 1990.

    [9.] Hsisheng Teng, M.A. Serio, M.A. Wojtowicz, R. Bassilakis and P.R. Solomon. “Reprocessing of Used Tires into Activated Carbon and Other Products.” Ind. Eng. Chem. Res., Vol. 34, pp.3102-3111, 1995.

    [10.] M.J. Clarke. “Municipal Waste Combustion.” VIP-32, A&WMA,pp.966, 1993.

    [11.] H.J. Fornwalt and R.A. Hutchins. “Purifying Liquids with Activated Carbon.” Chemical Engineering, Vol. 73, pp.155-160, 1966.

    [12.] 廖志國, “操作條件對微波再生活性碳效率之影響及產物分析研究” 國立中山大學環境工程研究所碩士論文, 1999.

    [13.] S. Ogasawara, M. Kuroda and N. Wakao. “Preparation of Activated Carbon by Thermal Decomposition of Used Automotive Tires.” Ind. Eng. Chem. Res., Vol.26, pp.2552-2555, 1987.

    [14.] A.M. Warhurst, G.L . McConnachie and S.J.T. Pollard. ”Characterisation and Applications of Activated Carbon Produced from Moringa Oleifera Seed Husks by Single-Step Steam Pyrolysis.” Water Research, Vol. 31, pp.759-766, 1997.

    [15.] K. Gergova and S. Eser. “Effects of Activation Method on the Pore Structure of Activated Carbons from Apricot Stones.” Carbon, Vol. 34, pp.879-888, 1996.

    [16.] A. Ahmadpour and D.D. Do. “The Preparation of Activated Carbon from Macadamia Nutshell by Chemical Activation.” Carbon, Vol. 35, pp.1723-1732, 1997.

    [17.] 蔡文田,張慶源,王旭淵, “藉鉀鹽活化法從玉米穗軸研製活性碳” 第十三屆廢棄物處理技術研討會論文集,中華民國環境工程學會, pp.7-10, 民國 87 年.

    [18.] T.G. Cleveland, S. Garg and W.G. Rixey. “Feasibility of Fullerene Waste as Carbonaceous Adsorbent.” Journal of Environmental Engineering ASCE, Vol. 122, pp.235-238, 1996.

    [19.] S.K. Srivastava, R. Tyagi and N. Pant. ”Adsorption of Heavy Metal on Carbonaceous Material Developed from the Waste Slurry Generated in Local Fertilizer Plants.” Water Research, Vol. 2, pp.1161-1165, 1989.

    [20.] T. Asakawa and K. Ogino. “Adsorption of Phenol on Surface- modified Carbon Black from Its Aqueous Solution.” Journal of Colloid and Interface Science, Vol. 102, pp.348-355, 1984.

    [21.] 曾如玲, 吳豐智,“回收竹筷製備活性碳之研究” 第十三屆廢棄物處理技術研討會論文集, 中華民國環境工程學會, pp.18-25,民國 87 年.

    [22.] M.M. Dubinin. “Adsorption Properties and Microporous Structure of Carbonaceous Adsorbents.” Carbon, Vol. 25, pp.593-589, 1987.

    [23.] M. Smisek and S. Cerny. ”Activated Carbon.” Elserier Publishing Company, Amsterdam, 1970.

    [24.] P.L. Walker, O.C. Cariaso and I.M.K. Ismail. “Oxygen Chemisorption on As-Received and Acid-Treated Activated Carbon.” Carbon, Vol. 18, pp.375-377, 1980.

    [25.] 陳建達, “以活性碳處理含雙氧水廢水反應行為之研究” 崑山科技大學環境工程研究所碩士論文, 2014.

    [26.] Suganuma S, Nakajima K, Kitano M, Hayashi S, Hara M. “sp(3) -linked amorphous carbon with sulfonic acid groups as a heterogeneous acid catalyst. ” ChemSusChem. 2012;5(9):1841-6.

    [27.] 宸昱企業有限公司
    http://www.homemind.url.tw/%E6%B4%BB%E6%80%A7%E7%A2%B3%E6%AA%A2%E9%A9%97%E6%9C%8D%E5%8B%99.htm

    [28.] 鈞皓工業有限公司
    https://www.chunhao.com.tw/product-detail-2526456.html

    [29.] J. Yan-qiu. “Influence of Nitric Acid Modification on the Properties of Activated Carbon.” Biomass Chemical Engineering 2006

    [30.] 陳皓翔, “椰殼活性碳之製備及其吸附特性之研究” 屏東科技大學機械工程研究系所碩士論文, 2014.

    [31.] 化學清洗蝕刻區標準操作程序

    [32.] Huang Y-B, Fu Y. “Hydrolysis of cellulose to glucose by solid acid catalysts. Green Chemistry. ” 2013;15(5).

    [33.] 刘洪涛、王赞、刘艳、胡小勇、杨丽, “一种制备极低灰分超级电容活性炭的后处理工艺” 中國大陸專利技術CN102502621A, 2014.

    [34.] Suganuma S, Nakajima K, Kitano M, Hayashi S, Hara M. “sp(3) -linked amorphous carbon with sulfonic acid groups as a heterogeneous acid catalyst.” ChemSusChem. 2012;5(9):1841-6.

    [35.] Kinney, Corliss Robert; Grey, V. E. “Reactions of a Bituminous Coal with Sulfuric Acid.” (1959).

    [36.] Hu L, Lin L, Wu Z, Zhou S, Liu S. “Chemocatalytic hydrolysis of cellulose into glucose over solid acid catalysts.” Applied Catalysis B: Environmental. 2015: 174-175; 225-43.

    [37.] 千涵國際股份有限公司
    https://www.felca.com.tw/%e5%a1%94%e8%a8%ad%e5%82%99/.

    [38.] C. O. Okoye, I. Jones, M. Zhu, Z. Zhang, and D. Zhang. “Manufacturing of carbon black from spent tyre pyrolysis oil – A literature review. ” Journal of Cleaner Production, vol. 279, p. 123336, 2021, Art.

    [39.] Q. K. Tran, M. L. Le, H. V. Ly, H. C. Woo, J. Kim, and S.-S. Kim. “Fast pyrolysis of pitch pine biomass in a bubbling fluidized-bed reactor for bio-oil production.” Journal of Industrial and Engineering Chemistry, vol. 98, pp. 168-179, 2021, Art

    [40.] M. Ruiz, A. Callejas, A. Millera, M. Alzueta, and R. Bilbao. “Soot formation from C2H2 and C2H4 pyrolysis at different temperatures.” Journal of analytical and applied pyrolysis, vol. 79, no. 1-2, pp. 244-251, 2007, Art.

    [41.] Y. Rahib, T. Boushaki, B. Sarh, and J. Chaoufi. “Combustion and pollutant emission characteristics of argan nut shell (ANS) biomass.” Fuel Processing Technology, vol. 213, p. 106665, 2021, Art.

    無法下載圖示 全文公開日期 2028/01/06 (校內網路)
    全文公開日期 2028/01/06 (校外網路)
    全文公開日期 2028/01/06 (國家圖書館:臺灣博碩士論文系統)
    QR CODE