簡易檢索 / 詳目顯示

研究生: 梁展瑜
Jhan-Yu Liang
論文名稱: 高強度鋼筋混凝土柱最小剪力鋼筋量與剪力行為研究
Minimum Amount Shear Reinforcement and Shear Behavior of High-Strength Reinforced Concrete Columns
指導教授: 歐昱辰
Yu-Chen Ou
口試委員: 邱建國
Chien-Kuo Chiu
蕭輔沛
Fu-Pei Hsiao
歐昱辰
Yu-Chen Ou
學位類別: 碩士
Master
系所名稱: 工程學院 - 營建工程系
Department of Civil and Construction Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 293
中文關鍵詞: 鋼筋混凝土柱高強度材料軸力比剪力行為剪力鋼筋量剪力強度
外文關鍵詞: Reinforced concrete columns, High-strength materials, Axial load ratio, Shear behavior, Shear reinforcement, Shear strength
相關次數: 點閱:437下載:25
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鋼筋混凝土為台灣目前現今最普遍使用的建築材料,擁有成本低、耐久性高、防火性佳、隔音優良及易於維護等優點。隨著台灣的經濟急遽發展,人口快速增加,使得在都會區土地供不應求之問題,建築物被迫向上發展,而當建築越高,基礎及低樓層結構需承受更大的荷重,且台灣位於環太平洋地震帶,當地震來臨時,結構物底部必須承受更高的地震水平力與彎矩,由於必須抵抗較大的水平力以及彎矩,所需之結構物尺寸相對會提高,即可能會壓縮到低層樓的使用空間且成本也會隨著增加。而若採高強度材料提高鋼筋混凝土本身之強度,可有效縮小基礎及低樓層的斷面尺寸,並且減輕結構本身自重,此法可減少混凝土及鋼筋的消耗,促進了環境可延續性。
    本研究係針對於高強度鋼筋混凝土柱進行探討,為延續Kurniawan及接續Alrasyid之研究,試體設計採本研究所提出之最小剪力鋼筋量之下限,其目的為檢視內部應力重分配與層間變位角提升需求,共六組大型試體進行反覆載重側推分析,分別為四組與兩組採用相同之配筋方式;混凝土設計抗壓強度為70 MPa;縱向和剪力(橫向)鋼筋降伏強度設計為685 MPa與785 MPa,測試為採用不同軸力比,藉由不同之軸力比比較之間之行為差異性,其中也會穿插Ou、Kurniawan與Alrasyid之試體進行比較。另外,為驗證本研究建議之剪力強度預估公式,收集國內外高強度鋼筋混凝土柱之剪力行為試體,共為86組試驗數據,進行分析比較建立數據庫,並且檢視ACI 318剪力強度預估公式應用於高強度材料之適用性,與材料上限值評估,以便日後工程學界之應用與分析。
    試驗結果顯示本研究建議最小剪力鋼筋量能滿足應力重分配與層間變位角提升需求,以提供預警效果;建議剪力強度模型經分析能保守預估高低軸力下之柱構件,而混凝土與剪力鋼筋降伏強度上限可提高分別為130 MPa與600 MPa。


    Reinforced Concrete is used for most building in Taiwan. This is due to the advantage on fire resistance, high durability, low-cost and easy maintenance. The rapid growth of population and economic development increase the demand of high-rise building, which provides advantages in the dense area. Since Taiwan was located in Circum-Pasific seismic zone, using normal strength of RC for high-rise building will produce lack of space and high construction cost. RC with high-strength materials offers many benefit such as reducing member dimension and reinforced cages, increasing space at the lower story.
    In this study, an experimental testing was conducted as the continuation of previous study (Ou and Kurniawan; Ou et. al). Six half-scale double curvature columns were constructed and tested under the combination of cyclic loading and constant axial compression. The specified concrete compressive strength is 70 MPa. High-strength longitudinal (SD 685) and transverse (SD 785) reinforcement having specified yield strength 685 MPa and 785 MPa were used, respectively. The key parameters considered in the experimental program were Varian of axial compression and amount of shear reinforcement. A set database of 86 column test from other researchers and experimental result was built to evaluate the current ACI 318 nominal shear for high-strength reinforced concrete column. Based on the experimental result and evaluation of shear strength model on column database, a set of shear design provision of high-strength reinforced concrete column are proposed.
    This study proposed a formulation which is can provide internal stress redistribution and provide early warning in New RC Column. The proposed shear strength model provides conservative estimation for column under varied axial load compression. It is recommended to limit the concrete compressive strength up to 130 MPa and yield strength of shear reinforcement up to 600 MPa.

    摘要 Abstract 誌謝 目錄 表目錄 圖目錄 第一章 緒論 1.1研究動機與目的 1.2 研究內容 第二章 文獻回顧 2.1 簡介 2.2 國內外之研究回顧 2.2.1 Hiroyuki Aoyama[7]高強度柱剪力行為試驗研究 2.2.2 Makoto Maruta [8]高強度柱抗剪性能測試 2.2.3 Sakaguchi et.al [9]高強度柱反覆載重行為試驗研究 2.2.4 Kuramoto與Minamu [11]高強度鋼筋混凝土抗剪行為研究 2.2.5 F Watanabe與T. Kabesawa [11]高強度鋼筋混凝土剪力行為研究 2.2.6 Yu-Chen Ou與Dimas Pramudya [1,2]高強度柱剪力行為試驗研究 2.2.7 Yu-Chen Ou與Harun Alrasyid [4]高強度柱剪力行為試驗研究 2.3 高強度鋼筋混凝土最小剪力鋼筋量 2.3.1 剪力鋼筋 2.3.2 ACI-318(1983)最小剪力鋼筋量規定 2.3.3 ACI-318(1999-2002)[13]最小剪力鋼筋量規定 2.3.4 ACI-318(2002-)[14] 最小剪力鋼筋量規定 2.4 剪力強度分析模型 2.4.1 ACI 318-14[3] 2.4.2 ASCE-ACI 426 建議公式[15,16] 2.4.3 ASCE/SEC 41-06(2007)[17] 2.4.4 日本建築協會(Architectural Institue of Japan,AIJ) 1990 [19] 2.5 撓曲強度分析模型 2.5.1 ACI 318-11[21] 2.5.2 ITG 4.3R-07[22] 2.6 高強度鋼筋混凝土提供之剪力強度 第三章 試體規劃 3.1 試體設計 3.1.1 規劃 3.1.2 試體斷面與配筋設計 3.1.3 設計參數 3.2 試體製作 3.3 儀器裝設 3.3.1 外部量測儀器 3.3.2 內部量測儀器 3.4 測試方法 第四章 測試結果 4.1 材料試驗 4.1.1 混凝土抗壓試驗 4.1.2 鋼筋拉伸試驗 4.2 試體載重與位移關係行為 4.2.1 側向力修正 4.2.2 試體 A-5 4.2.3 試體 B-5 4.2.4 試體 C-5 4.2.5 試體 D-5 4.2.6 試體 C-6 4.2.7 試體 D-6 4.3 試體裂縫發展與破壞狀況 4.3.1 試體A-5 4.3.2 試體 B-5 4.3.3 試體 C-5 4.3.4 試體 D-5 4.3.5 試體 C-6 4.3.6 試體 D-6 4.4 測試結果比較 4.5 剪力裂縫角度 4.6 應變計量測 4.6.1 縱向鋼筋應變 4.6.2 橫向鋼筋(剪力鋼筋)應變 4.7 剪力強度貢獻 4.8 位移貢獻 4.8.1 撓曲及主筋拉拔位移 4.8.2 剪力位移 4.8.3 位移分佈 4.9 強度分析驗證 4.9.1 試體A-5強度評估 4.9.2 ACI 318[3]剪力強度評估 4.9.3 ITG 4.3R-07[22]撓曲強度評估 4.9.4 ACI 318[3]最小剪力鋼筋量評估 4.10 試驗行為評估 第五章 高強度筋混凝土柱剪力強度 5.1 高強度鋼筋混凝土柱資料庫 5.2 剪力強度分析建議模型 5.2.1 混凝土剪力強度 5.2.2 剪力鋼筋剪力強度 5.3 剪力強度評估 5.3.1 試驗剪力強度評估 5.3.2 軸力比影響評估 5.3.2 混凝土強度影響評估 5.3.3 剪跨比影響評估 5.3.4 縱向鋼筋量影響評估 5.3.5 剪力(橫向)鋼筋量影響評估 5.4 剪力強度評估總結 第六章 高強度鋼筋混凝土柱剪力鋼筋量評估 6.1 最小剪力鋼筋量 6.1.1 簡介 6.1.2 建議最小剪力鋼筋量 6.2 最大剪力鋼筋量 第七章 結論與未來展望 7.1 結論 7.1.1 剪力強度分析模型整理 7.1.2 試驗結果 7.2 未來展望 參考文獻 附錄A 高強度鋼筋混凝土柱試驗數據 附錄B 試體各層間變位角破壞照 附錄C 應變計量測 附錄D 層間變位角與柱高之位移變化 附錄E 試體設計詳細圖 作者簡介

    1. Ou, Y.-C., and Kurniawan, D. P. (2015a). "Shear Behavior of Reinforced Concrete Columns With High-Strength Steel and Concrete." ACI Structural Journal, 112(1), 35-45.
    2. Ou, Y.-C., and Kurniawan, D. P. (2015b). "Effect of Axial Compression on Shear Behavior of High-Strength Reinforced Concrete Columns." ACI Structural Journal, 112(2), 209-220.
    3. ACI Committee 318 (2014). Building Code Requirements for Structural Concrete (ACI 318-14) and Commentary American Concrete Institute, Farmington Hills, Mich.
    4. Harun Alrasyid (2015). "Seismic Shear Behavior of High-Strength Reinforced Concrete Columns " Doctor Thesis, National Taiwan University of Science And Technology, Taipei,Taiwan.
    5. 建設省総合技術開發к①ЖラヱЬ:鉄筋ヵ⑦ヱэみЬ造建築物之超軽量化․超高層化技術ソ開發(New RC),平成四年度構造性能分科会報告書,(財)国土開發技術研究Й⑦Уみ,1993。
    6. 王榮進、李宏仁「含高強度材料RC 柱之軸向受力行為與強度評估」,內政部建築研究工程組。
    7. Aoyama, H. (2001). Design of Modern Highrise Reinforced Concrete Structures, Imperial College Press, London, UK.
    8. Maruta, M. "Shear Capacity of Reinforced Concrete Column Using High Strength Concrete." Proc., The Eighth International Symposium on Utilization of High-Strength and High-Performance Concrete.
    9. Sakaguchi, N., Yamanobe, K., Kitada, Y., Kawachi, T., and Koda, S. "Shear Strength of High-Strength Concrete Members." Proc., SP-121: Second International Symposium on High-Strength Concrete, 155-178.
    10. Kuramoto, H., and Minami, K. "Experiments on The Shear Strength of Ultra-High Strength Reinforced Concrete Columns." Proc., The Tenth World Conference on Earthquake Engineering, 3001-3006.
    11. Watanabe, F., and Kabeyasawa, T. "Shear Strength of RC Members with High-Strength Concrete " Proc., SP-176: High-Strength Concrete in Seismic Regions, 379-396.
    12. Roller, J. J., and Russell, H. G. (1990). "Shear Strength of High-strength Concrete Beams with Web Reinforcement." ACI Structural Journal, 87(2), 191-198.
    13. ACI Committee 318 (1999). Building Code Requirements for Structural Concrete (ACI 318-99) and Commentary (ACI 318R-99), American Concrete Institute, Farmington Hills, Mich.
    14. ACI Committee 318 (2002). Building Code Requirements for Structural Concrete (ACI 318-02) and Commentary (ACI 318R-02), American Concrete Institute, Farmington Hills, Mich.
    15. ASCE-ACI Task Committee 426 (1973). "The Shear Strength of Reinforced Concrete Members." Journal of the Structural Division, Proceedings of the American Society of Civil Engineers, 99(ST6), 1091-1187.
    16. ASCE-ACI Task Committee 426 (1977). "Suggested Revisions to Shear Provisions for Building Codes." ACI Journal, American Concrete Institute., 99(ST6), 458-469.
    17. ASCE/SEI 41-06 (2007). Seismic Rehabilitation of Existing Buildings American Society of Civil Engineers, Reston,Va.
    18. Sezen, H. (2002). "Seismic Behavior and Modeling of Reinforced Concrete Building Columns." PhD Thesis, University of California, Berkeley.
    19. AIJ (1990). Design Guidelines for Earthquake Resistant Reinforced Concrete Building Based on Ultimate Strength Concept Architectural Institute of Japan, Japan.
    20. Whitney. C. S., "Design of Reinforced Concete Members Under Flexure or Combined Flexure and Direct Compression, " Journal of American Concrete Institute, Vol. 33, 1937.
    21. ACI Committee 318 (2011). Building Code Requirements for Structural Concrete (ACI 318-11) and Commentary, " American Concrete Institute,2011.
    22. ACI Innovation Task Group 4 (2007). Specification for High-Strength Concrete in Moderate to High Seismic Applications (ACI ITG-4.3R-07), American Concrete Institute Farmington Hills, Mich.
    23. CSA Committee A23.3 (2004). Design of Concrete Structures (CSA A23.3-04), Canadian Standard Association, Mississauga, Canada.
    24. CEN European Committe for Strandardization (2004). Eurocode 2: Design of Concrete Structures - Part 1-1: General Rules and Rules for Buildings, CEN European Committe for Strandardization, Brussels,Switzerland.
    25. Concrete Committee of Japan Society of Civil Engineers (2007). Standard Specifications for Concrete Structures "Design", Japan Society of Civil Engineers, Tokyo,Japan.
    26. Munikrishna, A., Hosny, A., Rizkalla, S., and Zia, P. (2011). "Behavior of Concrete Beams Reinforced with ASTM A1035 Grade 100 Stirrups under Shear." ACI Structural Journal, 108(1), 34-41.
    27. ACI Committee 224 (2001). Control of Cracking in Concrete Structures (ACI 224R-01), American Concrete Institute, Farmington Hill, Mich.
    28. Budek, A. M., Priestley, M. J. N., and Lee, C. O. (2002). "Seismic Design of Columns with High-Strength Wire and Strand as Spiral Reinforcement." ACI Structural Journal, 99(5), 660-670.
    29. 吳愷毅,「玻璃纖維包覆螺紋管圍束鋼筋混凝土柱耐震實驗」,碩士論文,國立台灣大學土木系,2015。
    30. Chen, J.-C., Lin, T.-H., Chen, P.-C., Lin, K.-C., and Tsai, K.-C. "Advanced Seismic Testing Using The Multi-Axial Testing System (MATS) In NCREE " Proc., The Third International Conference on Advances in Experimental Structural Engineering.
    31. ACI-ASCE Committee 326 (now 426), “Shear and Diagonal Tension,” ACI JOURNAL, Proceedings V.59, No. 1, Jan. 1962, pp. 1-30; No. 2, Feb. 1962, pp. 277-334; and No. 3, Mar. 1962, pp. 352-396.
    32. Akihiko, N., Kuramoto, H., and Koichi, M. "Shear Strength and Behavior of Reinforced Concrete Columns Using High-Strength Concrete of σB = 1200 kgf/cm2, (Part 1 & Part 2)." Proc., Proceeding of Architectural Institute of Japan, 53-56.
    33. Sibata, M., Kanasugi, H., Uwada, M., Ooyama, H., and Yamashita, Y. (1997). "Experimental Study on Shear Behavior of Reinforced Concrete Columns Using High-Strength Shear Reinfrocement of 8000 kgf/cm2 Grade (Part 4)." Summaries of Technical Papers of Annual Meeting, Structures IV, Architectural Institute of Japan, 7-8.
    34. Shinohara, Y., Kubota, T., and Hayashi, S. "Shear Crack Behaviors of Ultra-High-Strength Concrete Columns, (Part 1 & Part 2)." Proc., Summaries of Technical Papers of Annual Meeting, Structures IV, Architectural Institute of Japan, 605-608.
    35. Takaine, Y., Nagai, S., Maruta, M., and Suzuki, N. (2010). "Shear Performance of RC Column Using 200 N/mm2 Concrete." Summaries of Technical Papers of Annual Meeting, Structures IV, Architectural Institute of Japan, 295-296.
    36. Takaine, S., and Yoshioka, K. "Shear Strength of RC Columns Using High-Strength Concrete." Proc., Summaries of Technical Papers of Annual Meeting, Structures IV, Architectural Institute of Japan, 25-26.
    37. Paulay, T., and Priestley, M. J. N. (1992). Seismic Design of Reinforced Concrete and Masonry Buildings, John Wiley and Sons Inc, New York.
    38. Sezen, H., and Moehle, J. P. (2004). "Shear Strength Model for Lightly Reinforced Concrete Columns." ASCE Journal of Structural Engineering, 130(11), 1692-1703.
    39. Tureyen, A. K., and Frosch, R. J. (1996). "Concrete Shear Strength : Another Perspective." ACI Sructural Journal, 100(5), 609-615.
    40. Zheng, W., Kwan, A. K. H., and Lee, P. K. K. (2001). "Direct Tension Test of Concrete." ACI Material Journal, 98(1), 63-71.
    41. Johnson, M. K., and Ramirez, J. A. (1989). "Minimum Shear Reinforcement in Beams with Higher Strength Concrete." ACI Structural Journal, 86(4), 376-382.
    42. Ozcebe, G., Ersoy, U., and Tankut, T. (1999). "Evaluation of Minimum Shear Reinforcement Requirements for Higher Strength Concrete." ACI Structural Journal, 96(3), 361-369.
    43. Xie, Y., Ahmad, S. H., Yu, T., Hino, S., and Chung, W. (1994). "Shear Ductility of Reinforced Concrete Beams of Normal and High-Strength Concrete." ACI Structural Journal, 91(2), 140-149.
    44. Yoon, Y.-S., Cook, W. D., and Mitchell, D. (1996). "Minimum Shear Reinforcement in Normal, Medium,and High-Strength Concrete Beams." ACI Structural Journal, 93(5), 576-584.

    QR CODE