簡易檢索 / 詳目顯示

研究生: 吳御銓
Yu-Chuan Wu
論文名稱: λ/4減噪器應用在離心扇之數值與實務整合研究
An Integrated Numerical and Experimental Investigation for Quarter-wave Resonator on Centrifugal Fan
指導教授: 林顯群
Sheam-Chyun Lin
口試委員: 陳呈芳
none
李基禎
none
郭鴻森
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 156
中文關鍵詞: 離心風扇λ/4減噪器數值模擬氣動性能噪音
外文關鍵詞: Centrifugal fan, Quarter-wave resonator, CFD simulation, Aerodynamic performance, Acoustic noise
相關次數: 點閱:343下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 市面上常見離心風機均存有噪音問題,為了達到降噪要求,本研究利用風機性能及氣流噪音結合之數值模擬,並加裝λ/4減噪器評估其對特徵頻率與噪音量之影響;藉由數值模擬與實驗量測兩項利器之結合,來了解其流場與噪音的相關性,進而確認可能之流場與噪音缺失,以做為未來改善風機性能與噪音依據。首先量測風機之性能曲線,再根據文獻中之結果與建議,針對開孔直徑、開孔率及減噪器腔體長度,並根據本研究之風機大小(1.31m×1.52m×0.8m),選定不同之開孔直徑與開孔率。除此之外,考慮風機並不會只於額定轉速下操作,因此將增加三個轉速進行聲壓頻譜量測。首先進行無減噪器之離心風機,於不同轉速下之聲壓頻譜量測;之後便將繪製好之不同參數減噪器,於製作後安裝於風機舌部,同樣進行不同轉速下之聲壓頻譜量測,此外亦同時建立相關之數值模型,以進行不同轉速下配合不同減噪器之風機流場與聲壓頻譜模擬。
    實驗結果顯示,於1,175rpm時開孔10mm配合開孔率40%時,可有效降低第一特徵頻率點噪音約5 dBA,而1,100rpm時則是開孔10mm開孔率50%下,可有效降低第二特徵頻率噪音達9.5 dBA;然而,於1,000rpm時則無明顯之降噪效果,但於900rpm時開孔5mm開孔率30%,可降低第二特徵頻率點噪音約3 dBA。將所得之量測結果與數值模擬相互比較後,顯示模擬與實驗之性能曲線相當,且於特徵頻率點位置,其模擬與實驗之聲壓頻譜趨勢亦相同;雖然於噪音值有些許誤差,但仍在可接受之範圍內,因此證實數值模擬具有一定的準確度。而模擬中所預測之降噪結果,於1,175rpm、1,100rpm與900rpm分別為降低4.6 dBA、4.7 dBA及3.6 dBA;與實驗結果比較後可發現,其誤差值都在5 dBA以下。綜合上述之研究成果顯示,本文所設計之λ/4減噪器,已達到降噪效果之目標;此外透過流場分析,便能更進一步探討減噪器內之氣動性對其降噪之影響,同時規劃出完整之設計方法可供業界作為參考。


    This study intends to analyze and reduce the flow-induced noise for the centrifugal fan with a quarter-wave resonator by integrating efforts of numerical simulation, mockup fabrication, and experimental test. At first, a high-performance centrifugal fan is formed with the redesigned spiral housing and the radial impeller, which is constructed with the aids of the cascade theory and NACA airfoils. Also, four rotational speeds covering different operation conditions are considered here in the aerodynamic and acoustic evaluations, which are executed inside the AMCA test chamber and the semi-anechoic room, respectively. Later, several quarter-wave resonators are designed, fabricated, and installed with the centrifugal fan to diminish its noise level, which is attained from the FFT analyzer and served to evaluate the reduction effect of quarter-wave resonator. In the meantime, to save the mockup cost and cut the R&D time, the flow and acoustic fields associated with the centrifugal fan are simulated and assessed by using numerical software Fluent on various resonators to identify an appropriate resonator design.
    Consequently, the experimental outcomes show that the resonator with 10mm-diameter holes and 40% open-area ratio can result in a 5 dBA noise reduction on its fundamental frequency operating under 1,175 rpm. And the maximum 9.5 dBA reduction on the second harmonic frequency appears for the resonator with 10-diameter holes and 50% open-area ratio running at 1,100 rpm. However, noise reduction is not obvious at 1,000 rpm while a 3 dBA noise reduction on the second harmonic frequency is found on the resonator with 5mm-diamter holes and 30% open-area ratio at 900 rpm. Regards the CFD predictions, the calculated results indicate that the noise reductions at 1,175, 1,100, and 900 rpms are 4.6 dBA, 4.7 dBA and 3.6 dBA, respectively. Therefore, it is concluded that the noise deviation between numerical and experimental results are within 5 dBA while a good correlation over the entire frequency domains is found between these two outcomes. Furthermore, a comprehensive parametric study on the quarter-wave resonator is carried out and summarized to attain a design guideline for its application on centrifugal fan. In summary, the accomplishment of this study provides a systematic and complete scheme on noise reduction for a centrifugal fan with the addition of quarter-wave resonator design.

    摘要I AbstractIII 致 謝V 目 錄VI 圖索引X 表索引XIV 符號索引XV 第一章 緒論1 1.1 前言1 1.2 文獻回顧5 1.3 研究動機與目的10 1.4 研究流程11 第二章 噪音控制及實驗規劃15 2.1 風機噪音15 2.2 氣動噪音16 2.3 減噪器之設計18 2.3.1 原理及設計理論20 2.3.2 相關設計參數27 2.4 實驗設備與規劃31 2.4.1 性能量測設備31 2.4.2 噪音量測設備32 2.4.3 實驗規劃35 第三章 數值方法37 3.1 統御方程式與紊流模型37 3.1.1 統御方程式38 3.1.2 紊流模式理論40 3.1.3 聲學模式44 3.2 數值計算方法46 3.2.1 求解流程47 3.2.2 離散化方程式50 3.2.3 上風差分法51 3.2.4 速度與壓力耦合53 3.3 邊界條件設定55 第四章 實驗測試與結果分析57 4.1 減噪器製作與實驗配置57 4.1.1 減噪器腔體之設計57 4.1.2 前方開孔檔板61 4.1.3 實驗配置63 4.2 風機聲壓量測結果66 4.3 風機具減噪器之量測結果73 4.3.1 1,175rpm下之量測結果73 4.3.2 1,100rpm下之量測結果78 4.3.3 1,000rpm下之量測結果84 4.3.4 900rpm下之量測結果90 4.4 噪音量測結果比較95 第五章 實驗與模擬之驗證99 5.1 風機流場與聲壓之模擬99 5.1.1 數值模型網格建立99 5.1.2 流場分析105 5.1.3 噪音模擬分析106 5.2 具減噪器風機之模擬112 5.2.1 數值模型網格建立112 5.2.2 流場分析113 5.2.3 噪音模擬分析122 5.3 模擬結果比較125 第六章 結論與建議127 6.1 結論127 6.2 建議130 參考文獻132

    [1]CNS 8753, Determination of Sound Power Level of Noises for Fan, Blower, and Compressors, Chinese National Standard, 1982.
    [2]ANSI/AMCA Standard 210-99 (ANSI/ASHRAE 51-1999), Laboratory Method of Testing Fans for Aerodynamic Performance Rating, Air Movement and Control Association, Inc., 1999.
    [3]Zeller, W. and Stang, H., “Predetermination of the Axial-Flow Fans,” Heizung-Luftung-Haustchnik, Vol. 9, No. 12, 1957.
    [4]Zeller, W., “Conerning Mathematical Treatment of Noise Behaviour in Fans for Air Conditioning Plants,” VID-Berichte, No. 38, 1959.
    [5]Huebner, G., “Noise Generated by Centrifugal Fans,” Siemens-Zeitschrift, Vol. 8, 1959, pp. 145-155.
    [6]Schlichting, H., “Application of the Boundary Layer Theory to Flow Problems of Turbo Machines,” Siemens-Zeitschrift, Vol. 33, No. 7, 1959, pp. 74-82.
    [7]Leidel, W., “Einfluss Von Zungenabstand und Zungenradius auf Kennlinie und Gerausch eines Radialventilators,” DLR-FB, 1969, pp. 61-69.
    [8]Smith, W. A., “Reducing Blade Passage Noise in Centrifugal Fans,” American Society of Heating, Refrigerating and Air-Conditioning Engineers Transactions Part Ⅱ, Vol. 80, 1974, pp. 45-51.
    [9]Neise, W., “Noise Reduction in Centrifugal Fans: a Literature Survey,” Journal of Sound and Viberation, Vol. 45, No.3, 1976, pp. 375-403.
    [10]Neise, W. and Koopman, G. H., “Reduction of Centrifugal Fan Noise by Use of Resonator,” Journal of Sound and Viberation, Vol. 72, No. 2, 1980, pp. 297-308.
    [11]Neise, W. and Koopmann, G. H., “The Use of Resonators to Silence Centrifugal Blowers”, Journal of Sound and Vibration, Vol. 82, No. 1, 1982, pp. 17-27.
    [12]Lotz, R., “Inter-Noise 86 : Progress in noise control,” Proceedings of the International Conference on Noise Control Engineering, Vol. 1, 1986.
    [13]洪宗揚, “後傾式離心風機之噪音研究”,國立台灣工業技術學院碩士論文, 1996年。
    [14]呂水煙, “前傾式離心風機之噪音研究”,國立台灣工業技術學院碩士論文, 1997年。
    [15]Field, C. D., Fricke, F. R. , “Theory and Application of Quarter-wave Resonators : A Prelude to Their Use for Attenuation Noise Entering Bulidings Through Ventilation Openings,” Applied Acoustics, Vol. 53, No. 1-3, 1998, pp. 117-132.
    [16]Lighthill, M. J., “On Sound Generation AerodynamicallyⅠ: General Theory,” Proceedings of the Royal Society of London, Vol. 211, 1952, pp. 564-587.
    [17]Lowson, M. V., “The sound field for singularities in motion,” Proceedings of the Royal Society of London, 1965, pp. 559-572.
    [18]Liu, Q., Qi, D. and Mao, Y., “Numerical Calculation of Centrifugal Fan Noise,” Proceedings of Mechanical Engineers. Part C, Journal of Mechanical Engineering Science, Vol. 220, 2006, pp. 1167-1177.
    [19]Rafael, B. T., Sandra, V. S., Juan Pablo, H. C. and Carlos, S. M., “Numerical Calculation of Pressure Fluctuations in the Volute of a Centrifugal Fan,” Journal of Fluids Engineering, Vol. 128, 2006, pp. 359-369.
    [20]Lu, H. Z., Huang, L., So, R. M. C. and Wang, J., “A Computational Study of the Interaction Noise from a Small Axial-Flow Fan,” Journal of the Acoustical Society of America, Vol. 122, 2007, pp. 1404-1415.
    [21]蔡明倫, “風扇性能評估與設計方法之整合研究”,國立台灣科技大學博士論文, 2010年。
    [22]趙慶志, 樊鵬 “聲電類比方法研究以λ/4減噪器降低離心式風機噪音時減噪器固有頻率的選擇”, 噪音與運動控制, 1994年四月。
    [23]Ansys Fluent User’s Guide-14.5, ANSYS Inc. 2012.
    [24]Patankar, S. V. and Spalding, D. B., “A Calculation Procedure for Heat Mass and Momentum Transfer in Three-Dimensional Parabolic Flows”, International Journal of Heat Mass Transfer, Vol. 15, 1972, pp. 1787-1806.
    [25]Launder, B. E. and Spalding, D. B., “Lectures in Mathematical Models of Turbulence”, Academic Press, London, England, 1972.
    [26]Smirnov, R., Shi, S., and Celik, I., “Random Flow Generation Technique for Large Eddy Simulations and Particle-Dynamics Modeling”, Journal of Fluids Engineering, Vol. 123, 2001, pp. 359-371.
    [27]Uranga, A., Persson, P., Drela, M., and Peraire, J., “Implicit Large Eddy Simulation of Transitional Flows over Airfoils and Wings”, 19th AIAA Computational Fluid Dynamics, San Antonio, Texas, 2009.
    [28]Hinze, J. O., Turbulence, McGraw-Hill Publishing Co, 1975.
    [29]Ffowcs Williams, J. E. and Hawkings, D. L., “Sound Generation by Turbulence and Surface in Arbitrary Motion”, Philosophical Transactions of the Royal Society of London, Vol. 264, 1969, pp. 321-342.

    無法下載圖示 全文公開日期 2019/07/29 (校內網路)
    全文公開日期 2024/07/29 (校外網路)
    全文公開日期 2024/07/29 (國家圖書館:臺灣博碩士論文系統)
    QR CODE