簡易檢索 / 詳目顯示

研究生: 程品皓
Pin-hao Cheng
論文名稱: 鋰離子電池添加劑之開發
Development of Additives for Lithium-ion Battery
指導教授: 黃炳照
Bing-joe Hwang
口試委員: 陳崇賢
Chorng-shyan Chern
林智汶
Chi-wen Lin
葉昀昇
Yun-sheng Ye
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 203
中文關鍵詞: 離子液體高分子高分歧化聚合物固體電解質界面熱穩定性鋰離子電池
外文關鍵詞: hyperbranch polymer, Polymer ionic lquid, SEI layer, thermal stability, lithium ion battery
相關次數: 點閱:337下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究開發兩種不同功能添加劑之應用 (一)高分子離子液體修飾石墨烯(Polymer Ionic Liquid Functionalized Graphene)作為鋰離子電池陰極之助導添加劑於鋰離子電池陰極之應用。(二)高分歧化聚合物(Hyperbranced polymaleimide)應用於鋰離子電池陰極之熱穩定型添加劑。
    (一) 離子液體高分子修飾石墨烯(PIL-FG),用於二次鋰電池取代助導添加劑,來提升鋰離子在電極內部之傳導度。當添加量為1.75 wt.% 時,能使電池在高電流速率充放電條件下,有效減少極化現象,有較好的效能及壽命,但在3.5 wt.% 添加後,在高電流速率充放電之條件下,極化現象又趨於增加,此結果可以歸因於低電子導度之PIL-FG添加量增加,造成整體電極之阻抗提高。
    (二) Hyper Branched Polymaleimide (HBPM) 經過電化學程序後,會於陰極材料鋰鈷氧(LiCoO2)表面上形成固態電解質介面(solid electrolyte interface,SEI ),此新的SEI層能有效提升原本鋰鈷氧於電池系統中的熱穩定性及安定性;由DSC結果測試,可以觀察到熱裂解溫度及放熱量皆隨著HBPM導入的含量增加而明顯延遲(1 wt.% HBPM添加時溫度延遲約20oC,3、5 wt.%延遲約60 oC)


    In this work, the development of two additives with different functions were investigated. (I) Polymer ionic liquid-functionalized graphene (PIL-FG) used as a conductive promoter at cathode; (II) hyperbranced polymaleimide used as an additive at cathode.
    I. PIL-FG, instead of the conductive promoter of carbon in lithium ion battery, enhances ionic conductivity of lithium inside the electrode. Polarization phenomenon is efficiently decreased, which results in better performance and cyclic life at high C-rate as cathode materials with 1.75 wt.% PIL-FG loading. However, polarization phenomenon at high C-rate becomes becomes wrose at higher PIL-FG loading (3.5 wt.%) that is attributed to the increasing electrode impedance.
    II. After an electrochemical process, HBPM forms the new SEI layer on the surface of lithium cobalt oxide, which enhances the thermal stability of lithium cobalt oxide in the battery system. The increasing of thermal stability and the decreasing of exo-thermal with HBPM loading increased were observed in DSC test (onset temperature: pristine LiCoO2=200oC; 1wt.% HBPM=220oC; 3 wt.% HBPM=262oC; 5 wt.% HBPM=263oC).

    目錄 摘要 I Abstract III 致謝 IV 目錄 V 圖目錄 XIV 表目錄 XXI 第一章 緒論 23 1-1前言 23 1-2研究動機與目的 8 1-2-1離子型高分子石墨烯之炭系添加劑 8 1-2-2熱穩定型添加劑 9 第二章 文獻回顧 12 2-1 高分子離子液體 (Polymeric ionic liquid, PIL) 12 2-2 石墨烯(Graphene) 14 2-3 二次鋰離子電池之組成與機制 16 2-4 二次鋰離子電池之各元件介紹 18 2-4-1正極 (陰極) 18 2-4-2負極 (陽極) 22 2-4-3 隔離膜 24 2-4-4 電解液 25 2-5 電解液添加劑 28 2-5-1 SEI (Solid electrolyte interface,固液電解質界面) 29 2-5-2 還原型添加劑 32 2-5-3 反應型添加劑 36 2-5-4 正極保護添加劑 40 2-6 安全性改質的技術及進展 43 2-6-1 電極材料本身的熱穩定性 45 2-6-1.1負極與電解液之間的反應 45 2-6-1.2正極與電解液之間的反應 46 2-6-2 電池安全機制 50 2-7 樹枝狀高分子 55 第三章 實驗方法 59 3-1 實驗儀器設備 59 3-2 實驗藥品器材 61 3-3 材料鑑定分析 63 3-4-1 掃瞄式電子顯微鏡分析(SEM) 63 3-4-2 能量散佈分析儀(EDS) 63 3-4-3 微分掃描熱卡分析儀 (DSC) 64 3-4-4 核磁共振儀分析(NMR) 66 3-4-5 傅立葉轉換紅外線光譜儀(FTIR) 67 3-4-6 高解析光電子能譜儀(XPS) 68 3-4-7 熱重量分析儀 (TGA) 70 3-4-8 膠體滲透層析儀(GPC) 71 3-4 材料電化學特性分析 71 3-5-1 電池性能測試 71 3-5-2 循環伏安分析 72 3-5-3 交流阻抗分析 72 3-5實驗步驟 77 3-5-1離子液體高分子修飾石墨烯之合成步驟 77 3-5-1.1氧化石墨烯(Graphene Oxide,GO)之製備 77 3-5-1.2 離子型高分子 polyvinylimdazole (PVI)之合成 78 3-5-1.3 藉由非共價鍵修飾法合成離子液體型高分子(ionic liquid polymer)與氧化石墨(graphene oxide)結合 80 3-5-2熱穩定型樹枝狀高分子聚合物材料之合成步驟 82 3-5-2.1 1-phenyl-1H-pyrrole-2,5-dione 單體合成 82 3-5-2.2 Aniline單體純化 83 3-5-2.3 N-(4-carboxyphenyl)maleamic acid 單體之合成 84 3-5-2.4 N-(4-carboxyphenyl)maleimide 單體之合成 86 3-5-2.5 N-[4-(chlorocarbonyl)phenyl]maleimide 之合成 87 3-5-2.6 Hyperbranched polyester 之合成 88 3-5-2.7 Hyperbranched polyester- maleimide terminated 之合成 90 3-5-3 陰極(正極)極片之製備 91 3-5-4硬幣型電池之組裝 93 第四章 結果與討論 96 4-1 離子型高分子石墨烯材料之合成鑑定與性質分析 97 4-1-1氧化石墨烯 ( graphene oxide; GO )之鑑定 97 4-1-2離子液體高分子Poly(1-vinyl-3-butylimidazolium)bromide [PVI(Br)] 材料之合成鑑定與性質分析 102 4-1-2.1 PVI(Br)的1H NMR 及13C NMR圖譜 102 4-1-3離子液體高分子修飾之石墨烯(polymeric ionic liuiqd-functionalized graphene;polymer-FG)材料鑑定與性質分析 104 4-1-3.1 PIL-FG之FTIR 圖譜 104 4-1-3.2 PIL-FG 之 XPS 圖譜 105 4-1-3.3 PIL-FG 之 SSNMR 圖譜 107 4-1-3.4 PIL-FG 之 TGA 圖譜 108 4-1-4 PIL-FG材料之分散性 109 4-1-5 PIL-FG 電化學分析 112 4-2-5.1 PIL-FG以及LiCoO2 之循環伏安分析 112 4-2-5.2 LiCoO2 /PIL-FG之交流阻抗分析 113 4-2-5.3 LiCoO2 不同速率之充放電圖譜分析 116 4-2-5.4 PIL-FG 為導電炭材之不同速率之充放電圖譜分析 117 4-2 熱穩定型高分子材料之合成鑑定與性質分析 121 4-2-1 1-phenyl-1H-pyrrole-2,5-dione材料的合成鑑定與性質分析 121 4-2-1.1 1-phenyl-1H-pyrrole-2,5-dione之DSC結果 121 4-2-1.2 1-phenyl-1H-pyrrole-2,5-dione單體之IR圖譜 122 4-2-1.3 1-phenyl-1H-pyrrole-2,5-dione 單體之NMR圖譜 124 4-2-2 N-(4-carboxyphenyl)maleamic acid材料的合成鑑定與性質分析 126 4-2-2.1 N-(4-carboxyphenyl)maleamic acid單體的DSC結果 126 4-2-2.2 N-(4-carboxyphenyl)maleamic acid 單體的IR圖譜 127 4-2-2.3 N-(4-carboxyphenyl)maleamic acid 單體的NMR圖譜 128 4-2-3 N-(4-carboxyphenyl)maleimide單體材料的合成鑑定與性質分析 131 4-2-3.1 N-(4-carboxyphenyl)maleimide單體材料的DSC測試結果 131 4-2-3.2 N-(4-carboxyphenyl)maleimide單體材料的IR分析結果 132 4-2-3.3 N-(4-carboxyphenyl)maleimide單體材料的NMR分析結果 133 4-2-4 N-[4-(chlorocarbonyl)phenyl]maleimide單體材料的合成鑑定與性質分析 136 4-2-4.1 N-[4-(chlorocarbonyl)phenyl]maleimide單體材料的DSC測試結果 136 4-2-4.2 N-[4-(chlorocarbonyl)phenyl]maleimide單體材料的IR分析結果 137 4-2-4.3 N-[4-(chlorocarbonyl)phenyl]maleimide之NMR測試 139 4-2-5 樹枝狀高分子的合成鑑定與性質分析 141 4-2-5.1樹枝狀高分子之NMR分析結果 143 4-2-5.2 樹枝狀高分子之IR分析結果 146 4-2-5.3 Hyperbranchedpolymer的TGA分析結果 149 4-2-6 Hyperbranched polymaleimide (HBPM) 之電化學性質與電性表現 150 4-2-6.1 1-phenyl-1H-pyrrole-2,5-dione之電化學性質 150 4-2-6.2 Hyperbranched polymaleimide之循環伏安曲線圖 153 4-2-6.3 Hyperbranched polymaleimide 之交流阻抗分析 155 4-2-6.4 Hyperbranched polymaleimide的充放電曲線圖 158 4-2-7 Hyperbranched polymaleimid不同添加量對電池的熱穩定性分析 162 第五章 結論 164 5-1 離子型高分子石墨烯材料 164 5-2 熱穩定型高分子材料 165 未來展望 167 附錄1 168 附錄2 170 參考文獻 175

    1. 李銅進, 「鋰一次電池發展」, 材料與社會(1992). p. 第54頁.
    2. P.G. Balakrishnan, R.R., T. Prem Kumar, <Safety mechanisms in lithium-ion batteries.pdf>. Journal of Power Sources 155: p. 401–414.
    3. Stankovich, S., et al., Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 2007. 45(7): p. 1558-1565.
    4. Kim, T.Y., et al., High-Performance Supercapacitors Based on Poly(ionic liquid)-Modified Graphene Electrodes. ACS Nano, 2010. 5(1): p. 436-442.
    5. Winter M., B.J.O., Spahr M. E. and Novak P., Advanced Materials 10 (1998). 725.
    6. S. Tobishima, J.I.Y., J. Power Sources 81–82 (1999) 882.
    7. U. von Sacken, E.N., A. Sundher, J.R. Dahn, Solid State Ionics69 (1994). 284.
    8. Ye, Y.-S., J. Rick, and B.-J. Hwang, Ionic liquid polymer electrolytes. Journal of Materials Chemistry A, 2013. 1(8): p. 2719-2743.
    9. Yuan, J. and M. Antonietti, Poly(ionic liquid)s: Polymers expanding classical property profiles. Polymer, 2011. 52(7): p. 1469-1482.
    10. Mecerreyes, D., Polymeric ionic liquids: Broadening the properties and applications of polyelectrolytes. Progress in Polymer Science, 2011. 36(12): p. 1629-1648.
    11. Ohno, H., Design of Ion Conductive Polymers Based on Ionic Liquids. Macromolecular Symposia, 2007. 249-250(1): p. 551-556.
    12. Novoselov, K.S., et al., Electric field in atomically thin carbon films. Science, 2004. 306(5696): p. 666-669.
    13. Novoselov, K.S., et al., Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences of the United States of America, 2005. 102(30): p. 10451-10453.
    14. Stankovich, S., et al., Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon, 2006. 44(15): p. 3342-3347.
    15. Xu, Y., et al., A graphene hybrid material covalently functionalized with porphyrin: Synthesis and optical limiting property. Advanced Materials, 2009. 21(12): p. 1275-1279.
    16. Stankovich, S., et al., Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate). Journal of Materials Chemistry, 2006. 16(2): p. 155.
    17. Choi, E.-Y., et al., Noncovalent functionalization of graphene with end-functional polymers. Journal of Materials Chemistry, 2010. 20(10): p. 1907.
    18. Fang, M., et al., Single-layer graphene nanosheets with controlled grafting of polymer chains. Journal of Materials Chemistry, 2010. 20(10): p. 1982-1992.
    19. Rafiee, M.A., et al., Buckling resistant graphene nanocomposites. Applied Physics Letters, 2009. 95(22).
    20. 鄭朝陽, 聯合報 2009. 169期:D2.
    21. 楊模樺, 鋰電池材料技術發展. 工業材料雜誌 2006. 237:137.
    22. Padhi AK, N.K., Goodenough JB, Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. Journal of the Electrochemical Society 1997. 144:1188-1194.
    23. Chung SY, B.J., Chiang YM, Electronically conductive phospho-olivines as lithium storage electrodes. Nature Materials, 2002. 1:123-128.
    24. Mi CH, C.G., Zhao XB, Low-cost, one-step process for synthesis of carbon-coated LiFePO4 cathode. Materials Letters, 2005. 59:127-130.
    25. Mi CH, Z.X., Cao GS, Tu JP, In situ synthesis and properties of carbon-coated LiFePO4 as li-ion battery cathodes. Journal of the Electrochemical Society 2005. 152.
    26. Lu ZG, C.H., Lo MF, Chung CY, Pulsed Laser Deposition and Electrochemical Characterization of LiFePO4-Ag Composite Thin Films. Advanced Functional Materials, 2007. 17:3885-3896.
    27. Li C, Z.S., Cheng F, Ji W, Chen J, Porous LiFePO4/NiP Composite nanospheres as the cathode materials in rechargeable lithium-ion batteries. Nano Research 2008. 1:242-248.
    28. Croce F, D.E.A., Hassoun J, Deptula A, Olczac T, Scrosati B, A novel concept for the synthesis of an improved LiFePO4 lithium battery cathode. Electrochemical and Solid-State Letters, 2002. 5.
    29. Liu XM, H.Z., Oh S, Ma PC, Chan PCH, Vedam GK, Kang K, Kim JK, Sol-gel synthesis of multiwalled carbon nanotube-LiMn2O4 nanocomposites as cathode materials for Li-ion batteries. . Journal of Power Sources 2010. 195:4290-4296.
    30. Mizushima K, J.P., Wiseman PJ, Goodenough JB, LixCoO2 (0≦x≦1): A new cathode material for batteries of high energy density. Materials Research Bulletin 1980. 15:783-789

    31. Fey GT-K, M.P., Lu C-Z, Cho Y-D, Enhanced electrochemical performance and thermal stability of La2O3-coated LiCoO2. Electrochimica Acta, 2006. 51:4850-4858.
    32. 新エネルギー・産業技術総合開発機構 独. 2007, リチウム二次電池構成材料開発の状態と課題.
    33. 林素琴, 鋰電池材料發展分析. 工研院電子報 2009.
    34. 呂學隆, 鋰電池電解液產業在兩岸的發展現況. 工業材料雜誌, 2011. 289.
    35. Goodenough JB, K.Y., Challenges for rechargeable Li batteries. . Chemistry of Materials, 2010. 22:587-603.
    36. Zhang, S., A review on electrolyte additives for lithium-ion batteries. Journal of Power Sources, 2006. 162(2): p. 1379-1394.
    37. Peled, E., The Electrochemical Behavior of Alkali and Alkaline Earth Metals in Nonaqueous Battery Systems—The Solid Electrolyte Interphase Model. J. Electrochem. Soc., 1979. 126: p. 2047.
    38. Lithium-Ion_Batteries_Solid-Electrolyte_Interphase., P.B. Balbuena and Y. Wang, Editors. 2004, Imperial College Press.
    39. Peled E., G.D., Ardel G., Menachem C., Bar-Tow D. and and E. V, Role of sei in lithium and lithium ion batteries Mat. Res. Soc. Symp., 1995. 393: p. 209-221.
    40. Peled E., G.D.a.P.J., Anode/Electrolyte Interface, in Handbook of Battery Materials, B.J. O., Editor 1998.
    41. Peled E., M.C., Bar-Tow D. and Melman A., improved graphite anode for lithium-ion batteries: Chemically bonded solid electrolyte interface and nanochannel formation J. Electrochem. Soc., 1996. 143(1): p. L4-L7.
    42. Wang, F.-M., et al., Self-polymerized membrane derivative of branched additive for internal short protection of high safety lithium ion battery. Journal of Membrane Science, 2011. 368(1-2): p. 165-170.
    43. S.S. Zhang, M.S.D., K. Xu, J. Allen, T.R. Jow, Understanding solid electrolyte interface film formation on graphite electrodes. Electrochem. Solid-State Lett., 2001. 4.
    44. S.S. Zhang, K.X., T.R. Jow, EIS study on the formation of solid electrolyte interface in Li-ion battery Electrochim. Acta 2006. 51: p. 1636.
    45. S. Matsuta, T.A., K. Kitaura, Vibrational assignments of lithium alkyl carbonate and lithium alkoxide in the infrared spectra an ab initio MO study. J. Electrochem. Soc. 147 (2000) 1695, 2000. 147(1695).
    46. C. Korepp, H.J.S., T. Fujii, M. Ue, J.O. Besenhard, K.C. Moller,M. Winter, 2-Cyanofuran-A novel vinylene electrolyte additive for PC-based electrolytes in lithium-ion batteries. J. Power Sources, 2006. 158(578).
    47. B. Simon, J.P.B., U.S. Patent 5, 981, Editor 1997.
    48. J. Ufheil, M.C.B., A. W‥ursig, P. Novak, Maleic anhydride as an additive to γ-butyrolactone solutions for Li-ion batteries. Electrochim. Acta 2005. 50(1733).
    49. Y. Ein-Eli, S.R.T., V.R. Koch, The role of SO2 as an additive to organic li-ion battery electrolytes J. Electrochem. Soc., 1997. 144(1159).
    50. Y. Ein-Eli, S.R.T., V.R. Koch, New electrolyte system for Li-ion battery J Electrochem. Soc. , 1996. 143: p. L195-L197.
    51. Ein-Eli, Y., Dithiocarbonic anhydride (CS2) - A new additive in Li-ion battery electrolytes. J. Electroanal. Chem, 2002. 531(1): p. 95-99.
    52. M.W.Wagner, C.L., J.O. Besenhard, Effect of polysulfide-containing electrolyte on the film formation of the negative electrode J. Power Sources, 1997. 68(2): p. 328-332.
    53. J.O. Besenhard, M.W.W., M.Winter, A.D. Jannakoudakis, P.D. Jannakoudakis,E. Theodoridou, Inorganic film-forming electrolyte additives improving the cycling behavior of metallic lithium electrodes and the self-discharge of carbon-lithium electrodes J. Power Sources, 1993. 44: p. 413-420.
    54. R. Mogi, M.I., S.K. Jeong, Y. Iriyama, T. Abe, Z. Ogumia, Effects of some organic additives on lithium deposition in propylene carbonate J. Electrochem.Soc, 2002. 149(12): p. A1578-A1583.
    55. G.H. Wrodnigg, T.M.W., J.O. Besenhard, M. Winter, Propylene sulfite as film-forming electrolyte additive in lithium ion batteries J Electrochem.Commun., 1999. 1(3-4): p. 148-150.
    56. G.H. Wrodnigg, J.O.B., M. Winter, Cyclic and acyclic sulfites: New solvents and electrolyte additives for lithium ion batteries with graphitic anodes? . J. Power Sources 2001. 97-98: p. 592-594.
    57. G.H. Wrodnigg, J.O.B., M. Winter, Ethylene Sulfite as Electrolyte Additive for Lithium-Ion Cells with Graphitic Anodes J. Electrochem. Soc. , 1999. 146(2): p. 470-472.
    58. H. Gan, E.S.T., in U.S. Patent 6,136,4772000.
    59. Z.X. Shu, R.S.M., J.J. Murray, I.J. Davidson, Use of chloroethylene carbonate as an electrolyte solvent for a graphite anode in a lithium-ion battery. J. Electrochem. Soc., 1996. 143(7): p. 2230-2235.
    60. Z.X. Shu, R.S.M., J.J. Murray, I.J. Davidson, Use of chloroethylene carbonate as an electrolyte solvent for a lithium ion battery containing a graphitic anode J. Electrochem. Soc., 1995. 142(9): p. L161-L162.
    61. R. McMillan, H.S., Z.X. Shu, W.D. Wang, Fluoroethylene carbonate electrolyte and its use in lithium ion batteries with graphite anodes. J. Power Sources, 1999. 81-82(20-26).
    62. A. Naji, J.G., P. Willmann, D. Billaud, New halogenated additives to propylene carbonate-based electrolytes for lithium-ion batteries Electrochim. Acta, 2000. 45(12): p. 1893-1899.
    63. Y. Ein-Eli, B.M., D. Aurbach, Y. Carmeli, H. Yamin, S. Luski, The dependence of the performance of Li-C intercalation anodes for Li-ion secondary batteries on the electrolyte solution composition Electrochim. Acta 1994. 39(17): p. 2559-2569.
    64. J.O. Besenhard, P.C., M.W. Wanger, Mater. Sci. Forum, 1992. 91–93(647).
    65. B. Simon, J.P.B., M. Broussely, Electrochemical study of the passivating layer on lithium intercalated carbon electrodes in nonaqueous solvents J. Power Sources 43–44 (1993) 65, 1993. 43–44(1 -3 pt 1): p. 65-74.
    66. G.V. Zhuang, H.Y., B. Blizanac, P.N. Ross Jr., A study of electrochemical reduction of ethylene and propylene carbonate electrolytes on graphite using ATR-FTIR spectroscopy Electrochem. Solid-State Lett, 2005. 8(9): p. A441-A445.
    67. M.D. Levi , E.M., C. Wang,M. Koltypin,D. Aurbach, The effect of dimethyl pyrocarbonate on electroanalytical behavior and cycling of graphite electrodes J. Electrochem.Soc, 2004. 151(6): p. A848-A856.
    68. Lee, J.-T., Wu, M.-S., Wang, F.-M., Lin, Y.-W., Bai, M.-Y., Chiang, P.-C.J., Effects of aromatic esters as propylene carbonate-based electrolyte additives in lithium-ion batteries Journal of the Electrochemical Society, 2005. 152(9): p. A1837-A1843.
    69. Wang, C., Nakamura, H., Komatsu, H., Yoshio, M., Yoshitake, H., Electrochemical behaviour of a graphite electrode in propylene carbonate and 1,3-benzodioxol-2-one based electrolyte system Journal of Power Sources, 1998. 74(1): p. 142-145.
    70. Gong, J.B., Tsumura, T., Nakamura, H., Yoshio, M., Yoshitake, H., Abe, T. , Salt Lake City, UT, October 20-24 202nd ECS Meeting Abstracts, 2002. (Abstract No. 200)

    71. Xu, K., Zhang, S., Jow, T.R., Xu, W., Angell, C.A, LiBOB as salt for lithium-ion batteries. A possible solution for high temperature operation Electrochemical and Solid-State Letters, 2002. 5(1): p. A26-A29.
    72. Xu, K., Zhang, S., Poese, B.A., Jow, T.R, Lithium bis(oxalato)borate stabilizes graphite anode in propylene carbonate Electrochemical and Solid-State Letters, 2002. 5(11): p. A259-A262.
    73. Zhang, S.S., Xu, K., Jow, T.R., Enhanced performance of natural graphite in Li-ion battery by oxalatoborate coating Journal of Power Sources, 2004. 129(2): p. 275-279.
    74. Xu, K., Lee, U., Zhang, S., Wood, M., Jow, T.R, Chemical analysis of graphite/electrolyte interface formed in LiBOB-based electrolytes Electrochemical and Solid-State Letters, 2003. 6(7): p. A144-A148.
    75. K. Takechi, A.K., T. Shiga, in U.S. Patent 6,077,6282000.
    76. K. Takechi, T.S., in U.S. Patent 6,235,4312001.
    77. Amine, K., Improved lithium manganese oxide spinel/graphite Li-ion cells for high-power applications. Journal of Power Sources, 2004. 129(1): p. 14-19.
    78. Wu, K., Zhang, Y , Zeng, Y, Yang, J, Safety performance of lithium-ion battery. Progress in Chemistry 2011. 23(2-3): p. 401-409.
    79. Zhang, Z., Fouchard, D., Rea, J.R, Differential scanning calorimetry material studies: Implications for the safety of lithium-ion cells Journal of Power Sources, 1998. 70(1): p. 16-20.
    80. Maleki, H., Deng, G., Anani, A., Howard, J., Thermal stability studies of Li-ion cells and components. Journal of the Electrochemical Society, 1999. 146(9): p. 3224-3229.
    81. Andersson, A.M., Herstedt, M., Bishop, A.G., Edstrom, K., The influence of lithium salt on the interfacial reactions controlling the thermal stability of graphite anodes Electrochimica Acta, 2002. 47(12): p. 1885-1898.
    82. Belharouak, I., Lu, W., Liu, J., Vissers, D., Amine, K., Thermal behavior of delithiated Li(Ni0.8Co0.15Al0.05)O2 and Li1.1(Ni1/3Co1/3Mn1/3)0.9O2 powders Journal of Power Sources, 2007. 174(2): p. 905-909.
    83. Veluchamy, A., et al., Thermal analysis of LixCoO2 cathode material of lithium ion battery. Journal of Power Sources, 2009. 189(1): p. 855-858.
    84. MacNeil, D.D. and J.R. Dahn, The Reactions of Li[sub 0.5]CoO[sub 2] with Nonaqueous Solvents at Elevated Temperatures. Journal of The Electrochemical Society, 2002. 149(7): p. A912.
    85. Tobishima, S.-I., Yamaki, J.-I, A consideration of lithium cell safety Journal of Power Sources, 1999. 81-82: p. 882-886.
    86. Leising, R.A., Palazzo, M.J., Takeuchi, E.S., Takeuchi, K.J., A study of the overcharge reaction of lithium-ion batteries Journal of Power Sources, 2001. 97-98: p. 681-683.
    87. J.K. Feng, X.P.A., Y.L. Cao and H.X. Yang, Polytriphenylamine used as an electroactive separator material for overcharge protection of rechargeable lithium battery. Journal of Power Sources, 2006. 161(1): p. 545-549
    88. Ai, X.P., Cao, Y.L., Yang, H.X, Electrochemistry, 2010. 16(1): p. 6-10.
    89. Feng, X.M., Ai, X.P., Yang, H.X., A positive-temperature-coefficient electrode with thermal cut-off mechanism for use in rechargeable lithium batteries Electrochemistry Communications, 2004. 6(10): p. 1021-1024.
    90. Ha, H., et al., Enhanced electrochemical and thermal stability of surface-modified LiCoO2 cathode by CeO2 coating. Electrochimica Acta, 2006. 51(16): p. 3297-3302.
    91. S. H. Kim, K.B.S., K. R. Han and C.S. Kim, Surface modification of Li(Co1/3 Mn1/3Ni 1/3)O2 fine powders using aqueous Al2O 3 sol. Materials Science Forum 2007. 544-545: p. 857-860
    92. H.J. Kweon, J.J.P., J.W. Seo, G.B. Kim, B.H. Jung, and H.S. Lim, Effects of metal oxide coatings on the thermal stability and electrical performance of LiCoO2 in a Li-ion cell. J. Power Sources, 2004. 126: p. 156–162.
    93. Yang, M.H., Practical Outlook of Technology and Product Developments for Li-ion Battery. 工業材料雜誌, 2011. 295.
    94. 林宗賢, 新型有機發光高分子之合成、能量轉移機制研究. 國立中央大學, 2004.
    95. Tomalia, D.A., D.M. Hedstrand, and M.S. Ferritto, Comb-burst dendrimer topology: new macromolecular architecture derived from dendritic grafting. Macromolecules, 1991. 24(6): p. 1435-1438.
    96. Tomalia, D.A., et al., NEW CLASS OF POLYMERS: STARBURST-DENDRITIC MACROMOLECULES. Polymer Journal, 1984. 17(1): p. 117-132.
    97. Kim, T., et al., Synthesis of phase transferable graphene sheets using ionic liquid polymers. ACS Nano, 2010. 4(3): p. 1612-1618.
    98. Norman Edward Searle, W., Del, SYNTHESIS OF N-ARYL-MALEIlUDES, 1946.
    99. Stevens, M.P., " Polymer Chemistry " Oxford University Press:New
    York, 1999, 301.

    QR CODE