簡易檢索 / 詳目顯示

研究生: 林雅筑
Ya-Zhu Lin
論文名稱: 探討學習工具對於兒童學習編程的參與度與成效的影響
Study on the effect of educational tools on children's participation and performance in programming learning
指導教授: 董芳武
Fang-Wu Tung
口試委員: 林廷宜
Tingyi S. Lin
張岑瑤
Tsen-Yao Chang
學位類別: 碩士
Master
系所名稱: 設計學院 - 設計系
Department of Design
論文出版年: 2021
畢業學年度: 110
語文別: 中文
論文頁數: 87
中文關鍵詞: 7~12歲的兒童編程學習工具學習參與度學習成效
外文關鍵詞: Children Who are 7 to 12 years old, Programming teaching tools, Learning Engagement, Learning effectiveness
相關次數: 點閱:275下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

隨著教育學者持續推動將編碼和運算思維導入幼兒教育,促進了編程教育的普及性,同時市面上也出現了各式各樣應用於學習兒童學習編程邏輯的編程學習工具。以介面形式而言,學習工具包括以具體作為編程學習介面的學習工具和平板電腦學習上以圖像作為編程學習介面的學習工具。本研究採用非參與式觀察和半結構化訪談,收集18位7~12歲兒童使用以具體作為編程學習介面的學習工具與平板電腦上以圖像作為編程學習介面的學習工具學習編程的兒童的感受和想法,以及對學習成效的影響。

本次研究發現,在小團體或小班制的學習環境下,在平板電腦上以圖像作為編程學習介面的學習工具示範編程操作方式對7~12歲的兒童,相較於以具體作為編程學習介面的學習工具互動性更加,具有較好的示範效果;另一方面,以7~12歲的兒童操作不同編程學習工具學習編程邏輯而言,平板電腦學習上以圖像作為編程學習介面的學習工具運用網絡輔助學習,讓7~12歲的兒童有更深刻的感受到數位學習的便利性,反觀以具體作為編程學習介面的學習工具,利用實物的接觸和測試來確定合適的編碼塊,讓7~12歲的兒童覺得像遊戲玩具和拼圖一樣學習,更增加互動性和娛樂性。

總體而言,7~12歲的兒童使用不同的編程學習工具學習時,在各項學習參與的因素中都有正向的作用,並有助於提高學習的學習參與度;以具體作為編程學習介面的學習工具和平板電腦學習上以圖像作為編程學習介面的學習工具都有學習成效。


There has been a push to introduce coding and computational thinking in early childhood education in recent years. The wide availability of programming education has prompted various programming learning tools for children learning programming logic. The learning tools include those that use actual objects as the interface for learning and those that use tablets to learn images. In terms of the interface, there are physical and virtual. This study uses non-participant observations and semi-structured interviews to collect the feelings and thoughts of children in groups learning programming through using the tangible objects as the interface for programming learning and tablets to learn coding images and the impact on the learning effectiveness.

This study found that though the learning method of virtual image display on tablets is more interesting to children, tablets to learn coding images for programming learning use the convenience of the Internet to assist learning, allowing children to enjoy digital learning technology. However, from the perspective of input coding methods, the tangible objects as the interface for programming learning use the contact and testing of physical objects to determine the appropriate coding blocks, letting children learn like game toys and puzzles to increase interaction and entertainment. Besides, we learned that the tangible programming tools would be a better demonstration for teaching.

Overall, Different programming learning tools have positive effects and increase learning participation in the factors of different learning participation when children learn different programming learning tools. Both the entity and the virtual image learning tools on the tablet are effective for learning programming.

目錄 7 第一章 緒論 14 1.1 研究背景 14 1.2 研究動機 15 1.3 研究目的 17 1.4 研究範圍 18 1.5 研究流程 19 第二章 文獻探討 22 2.1 兒童編輯程式教育 22 2.1.1 兒童編輯程式學習之相關研究 24 2.2 兒童學習與數位學習 32 2.3 學習參與度之定義 33 2.4 學習成效之定義 34 第三章 研究方法 35 3.1 研究架構 36 3.2 研究對象 37 3.3 實驗工具 38 3.4 實驗流程 38 3.5 學習參與度與學習成效的實驗方法 42 3.5.1 半結構式訪談 43 3.5.2 非參與式觀察內容 45 第四章 研究結果 46 4.1 受測者資料敘述 48 4.2 訪談與觀察結果分析 49 4.2.1 教學時間 50 4.2.2 操作時間 54 4.2.2.1 趣味感 54 4.2.2.1.1 趣味感的行為訪談結果 57 4.2.2.1.2 趣味感的行為非參與式觀察結果 66 4.2.2.2 成就感 68 4.2.2.2.1 成就感的行為訪談結果 69 4.2.2.2.2 成就感的行為非參與式觀察結果 71 4.2.2.3 挑戰 72 4.2.2.3.1 挑戰的行為訪談結果 73 4.2.2.3.2 挑戰的行為非參與式觀察結果 74 4.2.2.4 合作與競爭 75 4.2.2.4.1 合作與競爭的行為訪談結果 76 4.2.2.4.2 合作與競爭的行為非參與式觀察結果 78 4.2.2.5 缺乏興趣 79 4.2.2.5.1 缺乏興趣的行為訪談結果 80 4.2.2.5.2 缺乏興趣的行為非參與式觀察結果 81 4.2.2.6 任務的成敗的非參與式觀察結果 82 第五章 結論與建議 83 5.1 學習參與度的各項行為表現的狀況 84 5.1.1教學時間 84 5.1.2操作時間 85 5.2不同編程學習工具學習編碼程式學習成效 88 5.3編程學習工具之設計與教學建議建議 89 5.4研究限制 91 參考文獻 92   圖目錄 圖1 研究流程圖……………………………………………………………………………………………21 圖2 研究架構圖……………………………………………………………………………………………37 圖3 Scratch JR……………………………………………………………………………………………..38 圖4 MATATA LAB…………………………………………………………………………………………38 圖5 iPad Pro上的Scratch jr ………………………………………………………………………..40 圖6 MATATA LAB ………………………………………………………………………………………..41 圖7 MATATA LAB實驗情境…………………………………………………………………………..42 圖8 Scratch jr實驗情境………………………………………………………………………………..42 圖9不同的編程學習工具的各項趣味感影響要素提及次數……………………………....55 圖10對於不同的編程學習工具的學習參與度的挑戰因素提及次數………………..…73 圖11對於不同的編程學習工具的合作與競爭影響要素提及次數………………………76 圖12對於不同的編程學習工具的缺乏興趣影響要素提及次數………………………….80 圖13教學時間內不同學習工具的學習參與度各項行為次數分數的平均數 ……....85 圖14操作時間時不同學習工具的學習參與度各項行為次數分數的平均數………..85 圖15操作時間時不同學習工具的學習參與度各項行為提及次數…………….…….....86 圖16 操作時間不同學習工具的任務成敗平均數………………………………..…………..89 表目錄 表1 國內外兒童學習程式與編輯程式之相關研究-合作學習…………………………….25 表2國內外兒童學習程式與編輯程式之相關研究-學習參與度………………………….28 表3 國內外兒童學習程式與編輯程式之相關研究-學習成效…………………………….30 表4組內實驗的實驗順序……………………………………………………………………………….36 表5 7~12歲兒童的半結構式訪談內容………………………………………………………..…..44 表6學習參與度觀察內容…………………………………………………………………………….....46 表7受測者敘述統計總表…………………………………………………………………………….....49 表8 教學時間「趣味感」行為次數的單因子相依樣本變異數分析摘要表…………..51 表9 教學時間「成就感」行為次數的單因子相依樣本變異數分析摘要表…...……..51 表10 教學時間「挑戰性」行為次數的單因子相依樣本變異數分析摘要表….…….52 表11教學時間「合作與競爭」行為次數的單因子相依樣本變異數分析摘要表…..53 表12教學時間「缺乏興趣」行為次數的單因子相依樣本變異數分析摘要表……...53 表13 操作時間「趣味感」行為次數的單因子相依變異數分析摘要表…….………….66 表14 操作時間「成就感」行為次數的單因子相依樣本變異數分析摘要表………….71 表15 操作時間「挑戰」行為次數的單因子相依樣本變異數分析摘要表……………..74 表16 操作時間「合作與競爭」行為次數的單因子相依樣本變異數分析摘要表…...78 表17 操作時間「缺乏興趣」行為次數的單因子相依樣本變異數分析摘要表.….…..81 表18「任務的成功」次數的單因子相依變異數分析摘要表……………………………..….82 表19「任務的失敗」次數的單因子相依變異數分析摘要表…………………………….….…83

參考文獻
英文文獻
1.Astin, A. W. (1982). Excellence and Equity in American Education.
2.Baeten, M., & Simons, M. (2016). Student teachers’ team teaching: How do learners in the classroom experience team-taught lessons by student teachers?. Journal of Education for Teaching, 42(1), 93-105.
3.Çiftci, S., & Bildiren, A. (2020). The effect of coding courses on the cognitive abilities and problem-solving skills of preschool children. Computer science education, 30(1), 3-21.
4.Clark, R. C., & Mayer, R. E. (2016). E-learning and the science of instruction: Proven guidelines for consumers and designers of multimedia learning. john Wiley & sons.
5.Elkin, M., Sullivan, A., & Bers, M. U. (2016). Programming with the KIBO robotics kit in preschool classrooms. Computers in the Schools, 33(3), 169-186.
6.Fassinger, P. A. (1996). Professors' and students' perceptions of why students participate in class. Teaching sociology, 25-33.
7.Garcia, T., McCann, E. J., Turner, J. E., & Roska, L. (1998). Modeling the mediating role of volition in the learning process. Contemporary educational psychology, 23(4), 392-418.
8.Govaerts, S., Cao, Y., Vozniuk, A., Holzer, A., Zutin, D. G., Ruiz, E. S. C., ... & Gillet, D. (2013, October). Towards an online lab portal for inquiry-based stem learning at school. In International Conference on Web-Based Learning (pp. 244-253). Springer, Berlin, Heidelberg.
9.Guay, F., Ratelle, C. F., & Chanal, J. (2008). Optimal learning in optimal contexts: The role of self-determination in education. Canadian Psychology/Psychologie canadienne, 49(3), 233.
10.Horn, M. S., Solovey, E. T., Crouser, R. J., & Jacob, R. J. (2009, April). Comparing the use of tangible and graphical programming languages for informal science education. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 975-984).
11.Hou, P. C. The Application of TPR Activities to English Teaching in Kindergarten.
12.Huang, J. C. (2019). Implementation and Innovation of the Interdisciplinary Research Community: A Research Community of AI Recommender System for Teaching Strategies. Jiaoyu Yanjiu Yuekan= Journal of Education Research, (300), 4-17.
13.Inhelder, B., & Piaget, J. (1958). The growth of logical thinking from childhood to adolescence: An essay on the construction of formal operational structures (Vol. 22). Psychology Press.
14.Johnson, D. W., & Johnson, R. T. (1987). Learning together and alone: Cooperative, competitive, and individualistic learning. Prentice-Hall, Inc.
15.Kalogiannakis, M., & Papadakis, S. (2020). The Use of Developmentally Mobile Applications for Preparing Pre-Service Teachers to Promote STEM Activities in Preschool Classrooms. In Mobile Learning Applications in Early Childhood Education (pp. 82-100). IGI Global.
16.Kim, Y., & Park, N. (2012). The effect of STEAM education on elementary school student’s creativity improvement. In Computer applications for security, control and system engineering (pp. 115-121). Springer, Berlin, Heidelberg.
17.Kuh, G. D. (2001). Assessing what really matters to student learning inside the national survey of student engagement. Change: The magazine of higher learning, 33(3), 10-17.
18.Kuh, G. D. (2001). Assessing what really matters to student learning inside the national survey of student engagement. Change: The magazine of higher learning, 33(3), 10-17.
19.Kuh, G. D. (2003). What we're learning about student engagement from NSSE: Benchmarks for effective educational practices. Change: The magazine of higher learning, 35(2), 24-32.
20.Li, Y., Schoenfeld, A. H., diSessa, A. A., Graesser, A. C., Benson, L. C., English, L. D., & Duschl, R. A. (2019). Design and design thinking in STEM education.
21.Li, Y., Schoenfeld, A. H., diSessa, A. A., Graesser, A. C., Benson, L. C., English, L. D., & Duschl, R. A. (2020). Computational thinking is more about thinking than computing.
22.Li, Y., Schoenfeld, A. H., diSessa, A. A., Graesser, A. C., Benson, L. C., English, L. D., & Duschl, R. A. (2020). On computational thinking and STEM education.
23.Loertscher, J. (2010). CLASSROOM ASSESSMENT IN SUPPORT OF BIOCHEMISTRY COURSE REFORM AT SEATTLE UNIVERSITY. Assessment of Chemistry, 113.
24.Loertscher, J. (2010). CLASSROOM ASSESSMENT IN SUPPORT OF BIOCHEMISTRY COURSE REFORM AT SEATTLE UNIVERSITY. Assessment of Chemistry, 113.
25.Long II, R. L., & Davis, S. S. (2017). Using STEAM to increase engagement and literacy across disciplines. The STEAM Journal, 3(1), 7.
26.Maher, M. L., & Kim, M. (2006). ’The effects of tangible user interfaces on designers’ cognitive actions’. Proceedingsofthe11thInternationalConferenceonComputer Aided Architectural Design Research in Asia, 119-124.
27.Master, A., Cheryan, S., Moscatelli, A., & Meltzoff, A. N. (2017). Programming experience promotes higher STEM motivation among first-grade girls. Journal of experimental child psychology, 160, 92-106.
28.Papadakis, S., & Kalogiannakis, M. (2020). A research synthesis of the real value of self-proclaimed mobile educational applications for young children. Mobile learning applications in early childhood education, 1-19.
29.Papadakis, S., & Kalogiannakis, M. (Eds.). (2019). Mobile learning applications in early childhood education. IGI Global.
30.Papadakis, S., Tousia, C., & Polychronaki, K. (2018). Women in computer science. The case study of the Computer Science Department of the University of Crete, Greece. International Journal of Teaching and Case Studies, 9(2), 142-151.
31.Papavlasopoulou, S., Sharma, K., & Giannakos, M. N. (2018). How do you feel about learning to code? Investigating the effect of children’s attitudes towards coding using eye-tracking. International Journal of Child-Computer Interaction, 17, 50-60.
32.Papert, S. A. (2020). Mindstorms: Children, computers, and powerful ideas. Basic books.
33.Pintrich, P. R. (1989). The dynamic interplay of student motivation and cognition in the college classroom. Advances in motivation and achievement, 6, 117-160.
34.Pintrich, P. R. (1991). A manual for the use of the Motivated Strategies for Learning Questionnaire (MSLQ).
35.Pintrich, P. R. (2003). Motivation and classroom learning.
36.Pintrich, P. R., & Schunk, D. H. (2002). Motivation in education: Theory, research, and applications. Prentice Hall.
37.Ploderer, B. (2005). Tangible User Interfaces: Potentials Inherent in Tangible User Interfaces for Simplified Handling of Computer Applications (Master’s thesis). Graz, Austria: University of Applied Sciences FH JOANNEUM.
38.Quarles, J., Lampotang, S., Fischler, I., Fishwick, P., & Lok, B. (2008, March). Tangible user interfaces compensate for low spatial cognition. In 2008 IEEE Symposium on 3D User Interfaces (pp. 11-18). IEEE.
39.Repenning, A., Webb, D., & Ioannidou, A. (2010, March). Scalable game design and the development of a checklist for getting computational thinking into public schools. In Proceedings of the 41st ACM technical symposium on Computer science education (pp. 265-269).
40.Richtel, M. (2014). Reading, writing, arithmetic, and lately, coding. The New York Times, A1.
41.Robbins, S. P., & Judge, T. A. (2013). Organizational behavior (Vol. 4). New Jersey: Pearson Education.
42.Robinson, B., & Schaible, R. M. (1995). Collaborative teaching: Reaping the benefits. College teaching, 43(2), 57-59.
43.Sáez-López, J. M., Román-González, M., & Vázquez-Cano, E. (2016). Visual programming languages integrated across the curriculum in elementary school: A two year case study using “Scratch” in five schools. Computers & Education, 97, 129-141.
44.Sapounidis, T., & Demetriadis, S. (2009). Tangible programming interfaces: a literature review. In Proceedings 4th Balkan conference in informatics, Thessaloniki (pp. 70-75).
45.Sapounidis, T., & Demetriadis, S. (2009). Tangible programming interfaces: a literature review. In Proceedings 4th Balkan conference in informatics, Thessaloniki (pp. 70-75).
46.Sapounidis, T., Demetriadis, S., Papadopoulos, P. M., & Stamovlasis, D. (2019). Tangible and graphical programming with experienced children: A mixed methods analysis. International Journal of Child-Computer Interaction, 19, 67-78.
47.Shaer, O., & Hornecker, E. (2010). Tangible user interfaces: past, present, and future directions. Now Publishers Inc.
48.Shaer, O., & Hornecker, E. (2010). Tangible user interfaces: past, present, and future directions. Now Publishers Inc.
49.Sharma, K., Papavlasopoulou, S., & Giannakos, M. (2019). Coding games and robots to enhance computational thinking: How collaboration and engagement moderate children’s attitudes?. International Journal of Child-Computer Interaction, 21, 65-76.
50.Stevenson, K., & Zweier, L. (2011). Creating a learning flow: A hybrid course model for high-failure-rate math classes. Educause Quarterly, 34(4), n4.
51.Tatar, S. (2005). Why keep silent? The classroom participation experiences of non-native-English-speaking students. Language and intercultural communication, 5(3-4), 284-293.
52.Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33-35.
53.Wren, C. R., & Reynolds, C. J. (2004). Minimalism in ubiquitous interface design. Personal and Ubiquitous Computing, 8(5), 370-373.
54.Wynn, T., & Harris, J. (2012). Toward a STEM+ arts curriculum: Creating the teacher team. Art Education, 65(5), 42-47.
55.Xie, L., Antle, A. N., & Motamedi, N. (2008, February). Are tangibles more fun? Comparing children's enjoyment and engagement using physical, graphical and tangible user interfaces. In Proceedings of the 2nd international conference on Tangible and embedded interaction (pp. 191-198).
56.Yakman, G. (2010). What is the point of STE@ M?–A Brief Overview. Steam: A Framework for Teaching Across the Disciplines. STEAM Education, 7.
57.Yakman, G. (2019). STEAM-An Educational Framework to Relate Things To Each Other And Reality.
中文文獻
58.王秀鶯. (2013). 導入 Scratch 程式教學對國中生自我效能與學習成就之探究—以程式設計課程為例. 國立臺灣科技大學人文社會學報, 9(1), 1-15.
59.王佳琪. (2017). 十二年國民基本教育課程綱要總綱之核心素養課程: 評量的觀點. 臺灣教育評論月刊, 6(3), 35-42.
60.王家通. (1995). 教育導論. 高雄市: 麗文文化.
61.刘德建、黄荣怀、李艳燕等、萧广德、李京津、王君秀、张香玲、高博俊(2019)。全球教育人发展白皮书北京。取自北京师范大学智慧学习研究院
62.余民寧. (2006). 影響學習成就因素的探討. 教育資料與研究雙月刊 教育資料與研究雙月刊 教育資料與研究雙月刊, 73, 11-24.
63.吳清山, & 林天祐. (2012). 學習領導.
64.张春兴. (1996). 愿为两岸心理科学发展尽点心力── 世纪心理学丛书总序. 心理科学, (6), 363-364.
65.李佳穗. (2004). 數位學習平台對不同年資之員工學習成果探討-以國內某公司為例, 銘傳大學管理科學研究所碩士在職專班碩士論文.
66.林佩璇, & 黃政傑. (1996). 合作學習. 台北: 五南.
67.林盈芳. (2011). 國小電腦課與表演藝術之協同教學: 以 Scratch 程式設計與聲音表演藝術之結合為例. 臺灣師範大學資訊教育學系學位論文, 1-159.
68.政宏, 博聖, 嘉鈴, & 有城. (2010). [國中小學習動機量表] 之編製及其信, 效度研究. 測驗學刊, 57(3), 371-402.
69.柯啟瑤. (2000). 協同教學初探—理論篇. 翰林文教雜誌 翰林文教雜誌 翰林文教雜誌 翰林文教雜誌, 15, 8-15.
70.胡畔, 蒋家傅, & 陈子超. (2016). 我国中小学 STEAM 教育发展的现实问题与路径选择. 现代教育技术, 26(8), 22-27.
71.赵慧臣, 周昱希, 李彦奇, 刘亚同, & 文洁. (2017). 跨学科视野下 “工匠型” 创新人才的培养策略——基于美国 STEAM 教育活动设计的启示. 远程教育杂志, 35(1), 94-101.
72.秦夢群. (1992). 高中教師管理心態, 學生內外控與學生學習習慣與態度之關係研究. 台北市: 行政院國科會科資中心.
73.張春興. (1996). 在應用科學基礎上建立教育心理學的獨立體系. 教育心理學報, (28), 1-13.
74.張春興. (2001). 教育心理學――三化理論的取向與實踐. 台北: 東華.
75.張春興. (2007). 張氏心理學辭典重訂版二刷. 臺北市: 東華.
76.梁朝雲. (2010). 實踐 [寓樂於教] 理念的數位學習設計. T&D 飛訊, 91, 1-19.
77.郭秀蓮, & 曾憲雄. (2009). Scratch 互動式故事敘說評量 (Doctoral dissertation).
78.郭禎祥, 陳瓊花, 陳箐繡, 蔡芷芬, & 陳建伶. (2000). 藝術欣賞課程教師手冊: 中學美術篇. 台北, 台灣: 國立台灣藝術教育館.
79.陳立真. (2008). 影響餐旅系學生校外實習適應舆學習成效因素之分析研究-以澎湖科技大學餐旅系爲例. 高雄餐旅學報, 10(1), 41-64.
80.陳怡倩. (2017). 從 STEAM 的 A 來看美國 STEAM 教育.
81.陳淑蘭. (2011). 新北市新移民與非新移民子女國小高年級學生學習態度與學習成效之研究. 國立臺北教育大學課程與教學傳播科技研究所學位論文, 1-197.
82.陳德懷, & 黃亮華. (2003). 邁向數位學習社會 (Vol. 57). 遠流出版.
83.黄永和, & 庄淑琴. (2004). “协同教学” 的回顾与展望 (Doctoral dissertation).
84.黃彥超. (2009). 影響學生學習表現之學校與系統因素探討: 以 PISA2006 年之結果為例.
85.黃淑玲(2013)。從知識到可觀察的能力:評估學習成效的策略與建議。評鑑雙月刊,(44),16-23。
86.葉展宏. (2013). 國小學童 scratch 程式設計教學. 師友月刊, (556), 90-91.
87.董宏建, & 胡贤钰. (2017). 我国 STEAM 教育的研究分析及未来展望. 现代教育技术, 9, 114-120.
88.語言學習策略教學對國小學童英語學習動機及學習成效之影響. 2008. PhD Thesis.
89.趙慧臣, & 陸曉婷. (2016). 開展 STEAM 教育, 提高學生創新能力─ 訪美國 STEAM 教育知名學者格雷特‧ 亞克門教授.
90.潘培鈞, & 賴阿福. (2014). 應用多元學習策略於 Scratch 程式設計課程對於五年級學童問題解決能力之影響. 國教新知, 61(4), 46-63.
91.蔡宗霖. (2010). 不同問題解決教學策略對國小生程式設計學習表現及學習態度之影響. 臺灣師範大學資訊教育學系學位論文, 1-74.
92.鄭博真 (Ed.). (2002). 協同教學: 基本概念, 實務和研究. 高雄復文.

無法下載圖示 全文公開日期 2024/12/23 (校內網路)
全文公開日期 2024/12/23 (校外網路)
全文公開日期 2024/12/23 (國家圖書館:臺灣博碩士論文系統)
QR CODE