簡易檢索 / 詳目顯示

研究生: 張晏銓
YAN-QUAN ZHANG
論文名稱: 交聯式流體化床操作優化參數及反應參數之研究
Study on Optimization Operation and Reaction Parameters for Interconnected fluidized Bed
指導教授: 曾堯宣
Yao-Hsuan Tseng
口試委員: 顧洋
Young Ku
李豪業
Hao-Yeh Lee
郭俞麟
Yu-Lin, Joseph, Kuo
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 132
中文關鍵詞: 化學迴路天然鐵礦載氧體交聯式流體化床
外文關鍵詞: Chemical looping combustion, natural iron ore, oxygen carrier, interconnected fluidized bed reactor
相關次數: 點閱:262下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 化石燃料的大量使用增加CO2排放,CO2等溫室氣體引起的全球暖化逐漸引起環境災害和經濟損失。化學迴路燃燒(Chemical Looping Combustion,CLC)是一種具CO2內分離特性且不需額外能量的燃燒程序,為潔淨高效的碳捕獲程序。載氧體為實現化學迴路燃燒的關鍵,天然鐵礦因具有環境友好和價格低廉等特性而被廣泛關注,應用鐵礦石載氧體能降低CO2捕獲成本,具有良好的工業應用潛力。
    本研究是以1kWth交聯式流體化床反應器的流體化情形以及轉化效能為主軸,使用澳洲鐵礦為載氧體,分為兩大部分,第一部分為交聯式流體化系統穩定性測試,測定不同溫度下(1123K、1173K、1223K)三股氣流分別通入燃料反應器、空氣反應器與隔離器,穩定1小時後獲得最小流化氣體流速,作為啟動化學迴路的操作基礎。第二部分為熱力學反應性測試,探討一氧化碳濃度、溫度及循環率對轉化率之影響,推算出封閉迴路(Loop seal)的流動狀態、燃料反應器返料腿與旋風分離器的串混情況以及固體循環率(Circulation rate),以推導出以天然礦石在1kWth交聯式流體化床反應器的反應速率式。最後,進行100小時連續操作評估1kWth交聯式流體化床反應器的長時間穩定性。在實場運轉考量時,載氧體的穩定反應性及程序的長時間穩定性是化學迴路技術的首要關鍵,分析研究的過程中,顯示燃料反應器與空氣反應器壓力差值以及氧氣濃度減低量可判斷系統的流體化運行的狀態,相關結果可直接應用於化學迴路燃燒試驗場。


    Using of fossil fuel exacerbates CO2 emission to the atmosphere, and the global warming phenomenon caused by greenhouse gases will result in serious disasters and economic losses. Chemical looping combustion (CLC) is an attractive combustion process to separate CO2 from exhaust without extra energy consumption, oxygen carrier play the key role to achieve CLC process. The CO2-capture cost can be reduced with using the natural iron ore as oxygen carrier due to its environmental friendliness and low price. It thus exhibits a great prospects for industrial application.
    This work was focused on the 1kWth interconnected fluidized bed system and the fuel conversion over it with using Australia iron ore as oxygen carrier. There were two major parts in this study, the first section is the stability of interconnected fluidized bed system, three designed gas streams were respectively induced into fuel reactor (FR), air reactor (AR), and loop seal (LS) under different temperatures (1123K, 1173K, 1223K) to maintain the stable fluidization over one hour. The minimum fluidization gas flow rates were obtained from this experiment, which were applied as start-up parameters for CLC system. In the second part, the thermodynamic reactivity was evaluated under variant conditions, such as effects of CO concentration, temperature, and solid circulation rate. The flow situation of LS, leakage rate from FR to cyclone, solid circulation rate were estimated to conduct the reaction rate of natural iron ore and CO in this CLC system. Furthermore, a 100-hour operation of this CLC system was carried out to evaluate its stability, the stable reactivity of oxygen carrier and long-term stability of process are the most important key factors to achieve in the practicality of scale-up CLC system. According to the analysis of data, the pressure drop of AR and FR, and the decrease in oxygen concentration of AR can be used as indexes of fluidization stability. These results can be applied in the CLC pilot directly.

    摘要 I Abstract II 致謝 IV 目錄 VI 圖目錄 IX 表目錄 XIV 第一章 緒論 1 1.1 前言 1 1.2 化學迴路燃燒程序之優勢及簡介 3 1.3 研究動機 5 第二章 文獻回顧 7 2.1 氣態燃料應用於化學迴路裝置 7 2.2 交聯式床型反應器與機制 12 2.2.1 氣-固流體化床固體顆粒之類似流體行為 12 2.2.2 固體循環量之量測 17 2.3 固態燃料應用於化學迴路裝置 18 2.4 載氧體改質應用於化學迴路系統 28 第三章 研究方法 36 3.1 實驗規劃 36 3.2 實驗藥品 37 3.3 實驗儀器 37 3.4 實驗步驟 42 3.4.1 1kWth交聯式流體化床系統 42 3.4.2 尾氣分析計算 43 3.4.3 半套式流體化床反應器 45 第四章 結果與討論 47 4.1 1kWth交聯式流體化床流化氣體流速的影響 47 4.1.1 燃料反應器流化氣體流速對於反應性的影響 48 4.1.2 封閉迴路流化氣體流速對於反應性的影響 52 4.1.3 空氣反應器流化氣體流速對於反應性的影響 58 4.1.4 優化操作之結論 61 4.2 1kWth交聯式流體化床動力學參數分析 63 4.2.1 溫度對反應性的影響 64 4.2.1 進料濃度對反應性的影響 69 4.2.2 循環率對反應性之影響 75 4.2.3 應用於1kWth反應器下之動力學參數估算 77 4.2.4 R值計算 80 4.3 1kWth交聯式流體化床長時間運行效能之探討 82 4.3.1 流體化床7小時試運行結果 82 4.3.2 流體化床100小時運行結果 96 4.4 1kWth交聯式流體化床反流體化情況分析 101 4.4.1 1kWth交聯式流體化床易架橋區段分析 102 4.4.2 壓力差的判斷系統穩定運行之分析 105 第五章 結論與未來展望 107 5.1 結論 107 5.2 未來展望 109 第六章 參考文獻 111

    R. A. Kerr, H. Levine, T. J. Sejnowski and W.-J. Rappel, "Division accuracy in a stochastic model of Min oscillations in Escherichia coli," Proceedings of the National Academy of Sciences of the United States of America, vol. 103, pp. 347-352, 2006.
    [2] D. Geldart, "The effect of particle size and size distribution on the behaviour of gas-fluidised beds," Powder Technology, vol. 6, pp. 201-215, 1972.
    [3] A. Lyngfelt and H. Thunman, "Construction and 100 h of operational experience of a 10-KW chemical-looping combustor," Carbon dioxide capture for storage in deep geologic formations-results from the CO2 capture project, vol. 1, pp. 625-645, 2005.
    [4] P. Hallberg, M. Hanning, M. Rydén, T. Mattisson and A. Lyngfelt, "Investigation of a calcium manganite as oxygen carrier during 99h of operation of chemical-looping combustion in a 10 kWth reactor unit," International Journal of Greenhouse Gas Control, vol. 53, pp. 222-229, 2016.
    [5] A. Cabello, P. Gayan, A. Abad, L. F. de Diego, F. Garcia-Labiano, M. T. Izquierdo, A. Scullard, G. Williams and J. Adanez, "Long-lasting Cu-based oxygen carrier material for industrial scale in Chemical Looping Combustion," International Journal of Greenhouse Gas Control, vol. 52, pp. 120-129, Sep 2016.
    [6] O. L. D. Kunii, and H. Brenner, "Fluidization Engineering,Butterworth-Heinemann," 1991.
    [7] 錢建嵩, 黃正忠, 楊玉樹, 歐建志, 張瑞顯, 吳耿東 及 游逸將, "流體化床技術," 高立圖書有限公司, 台北, 1992.
    [8] D. Geldart, "Types of gas fluidization," Powder technology, vol. 7, pp. 285-292, 1973.
    [9] T. Song, T. Shen, L. Shen, J. Xiao, H. Gu and S. Zhang, "Evaluation of hematite oxygen carrier in chemical-looping combustion of coal," Fuel, vol. 104, pp. 244-252, 2013.
    [10] J. Wu, L. Shen, J. Xiao and H. Lu, "Hydrodynamics of interconnected fluidized beds for chemical-looping combustion," JOURNAL OF CHEMICAL INDUSTRY AND ENGINEERING-CHINA-, vol. 58, p. 2753, 2007.
    [11] Z. Yu, C. Li, Y. Fang, J. Huang and Z. Wang, "Reduction rate enhancements for coal direct chemical looping combustion with an iron oxide oxygen carrier," Energy & Fuels, vol. 26, pp. 2505-2511, 2012.
    [12] P. Ohlemüller, J.-P. Busch, M. Reitz, J. Ströhle and B. Epple, "Chemical-Looping Combustion of Hard Coal: Autothermal Operation of a 1 MWth Pilot Plant," Journal of Energy Resources Technology, vol. 138, p. 042203, 2016.
    [13] P. Markström, C. Linderholm and A. Lyngfelt, "Chemical-looping combustion of solid fuels–Design and operation of a 100 kW unit with bituminous coal," International Journal of Greenhouse Gas Control, vol. 15, pp. 150-162, 2013.
    [14] K.-J. Hong, N. Tarutani, Y. Shinya and T. Kajiuchi, "Study on the recovery of phosphorus from waste-activated sludge incinerator ash," Journal of Environmental Science and Health, vol. 40, pp. 617-631, 2005.
    [15] P. A. Vesilind and T. B. Ramsey, "Effect of drying temperature on the fuel value of wastewater sludge," Waste management & research, vol. 14, pp. 189-196, 1996.
    [16] Z. Wzorek, M. Jodko, K. Gorazda and T. Rzepecki, "Extraction of phosphorus compounds from ashes from thermal processing of sewage sludge," Journal of loss prevention in the process industries, vol. 19, pp. 39-50, 2006.
    [17] F.-S. Zhang, S.-i. Yamasaki and M. Nanzyo, "Application of waste ashes to agricultural land—effect of incineration temperature on chemical characteristics," Science of the total environment, vol. 264, pp. 205-214, 2001.
    [18] J. Werther and T. Ogada, "Sewage sludge combustion," Progress in energy and combustion science, vol. 25, pp. 55-116, 1999.
    [19] M. B. Folgueras, R. M. a. Dı́az and J. Xiberta, "Sulphur retention during co-combustion of coal and sewage sludge," Fuel, vol. 83, pp. 1315-1322, 2004.
    [20] J. Nadziakiewicz and M. Kozioł, "Co-combustion of sludge with coal," Applied Energy, vol. 75, pp. 239-248, 2003.
    [21] M. Otero, C. Dıez, L. Calvo, A. Garcıa and A. Morán, "Analysis of the co-combustion of sewage sludge and coal by TG-MS," Biomass and Bioenergy, vol. 22, pp. 319-329, 2002.
    [22] A. Pettersson, L.-E. Åmand and B.-M. Steenari, "Leaching of ashes from co-combustion of sewage sludge and wood—Part I: Recovery of phosphorus," Biomass and Bioenergy, vol. 32, pp. 224-235, 2008.
    [23] C. Storm, H. Rüdiger, H. Spliethoff and K. R. Hein, "Co-pyrolysis of coal/biomass and coal/sewage sludge mixtures," in ASME 1998 International Gas Turbine and Aeroengine Congress and Exhibition, 1998, pp. V003T05A006-V003T05A006.
    [24] Y. Ninomiya, L. Zhang, T. Sakano, C. Kanaoka and M. Masui, "Transformation of mineral and emission of particulate matters during co-combustion of coal with sewage sludge," Fuel, vol. 83, pp. 751-764, 2004.
    [25] X. Niu, L. H. Shen, H. M. Gu, S. X. Jiang and J. Xiao, "Characteristics of hematite and fly ash during chemical looping combustion of sewage sludge," Chemical Engineering Journal, vol. 268, pp. 236-244, May 15 2015.
    [26] H. Ge, L. Shen, H. Gu and S. Jiang, "Effect of co-precipitation and impregnation on K-decorated Fe2O3/Al2O3 oxygen carrier in Chemical Looping Combustion of bituminous coal," Chemical Engineering Journal, vol. 262, pp. 1065-1076, 2015.
    [27] L. F. de Diego, A. Serrano, F. García-Labiano, E. García-Díez, A. Abad, P. Gayán and J. Adánez, "Bioethanol combustion with CO2 capture in a 1 kWth Chemical Looping Combustion prototype: Suitability of the oxygen carrier," Chemical Engineering Journal, vol. 283, pp. 1405-1413, 2016.
    [28] M. Ishida, M. Yamamoto and T. Ohba, "Experimental results of chemical-looping combustion with NiO/NiAl2O4 particle circulation at 1200 C," Energy Conversion and Management, vol. 43, pp. 1469-1478, 2002.
    [29] J. Adánez, L. F. de Diego, F. García-Labiano, P. Gayán, A. Abad and J. Palacios, "Selection of oxygen carriers for chemical-looping combustion," Energy & Fuels, vol. 18, pp. 371-377, 2004.
    [30] L. F. De Diego, F. Garcı́a-Labiano, J. Adánez, P. Gayán, A. Abad, B. M. Corbella and J. M. a. Palacios, "Development of Cu-based oxygen carriers for chemical-looping combustion," Fuel, vol. 83, pp. 1749-1757, 2004.
    [31] A. Abad, T. Mattisson, A. Lyngfelt and M. Rydén, "Chemical-looping combustion in a 300W continuously operating reactor system using a manganese-based oxygen carrier," Fuel, vol. 85, pp. 1174-1185, 2006.
    [32] S. Chuang, J. Dennis, A. Hayhurst and S. Scott, "Development and performance of Cu-based oxygen carriers for chemical-looping combustion," Combustion and Flame, vol. 154, pp. 109-121, 2008.
    [33] H. Ge, W. Guo, L. Shen, T. Song and J. Xiao, "Biomass gasification using chemical looping in a 25 kWth reactor with natural hematite as oxygen carrier," Chemical Engineering Journal, vol. 286, pp. 174-183, 2016.
    [34] J. Adanez, A. Abad, F. Garcia-Labiano, P. Gayan and F. Luis, "Progress in chemical-looping combustion and reforming technologies," Progress in Energy and Combustion Science, vol. 38, pp. 215-282, 2012.
    [35] A. Lyngfelt, "Oxygen carriers for chemical looping combustion-4000h of operational experience," Oil & Gas Science and Technology–Revue d’IFP Energies nouvelles, vol. 66, pp. 161-172, 2011.
    [36] J. Adánez, A. Cuadrat, A. Abad, P. Gayán, L. F. de Diego and F. García-Labiano, "Ilmenite activation during consecutive redox cycles in chemical-looping combustion," Energy & Fuels, vol. 24, pp. 1402-1413, 2010.
    [37] A. Fossdal, E. Bakken, B. Øye, C. Schøning, I. Kaus, T. Mokkelbost and Y. Larring, "Study of inexpensive oxygen carriers for chemical looping combustion," International Journal of Greenhouse Gas Control, vol. 5, pp. 483-488, 2011.
    [38] H. Leion, T. Mattisson and A. Lyngfelt, "Use of ores and industrial products as oxygen carriers in chemical-looping combustion," Energy & Fuels, vol. 23, pp. 2307-2315, 2009.
    [39] P. Moldenhauer, "Testing of minerals and industrial by-products as oxygen carriers for chemical-looping combustion in a 300W test reactor," Division of Energy Technology, 2009.
    [40] G. L. Schwebel, H. Leion and W. Krumm, "Comparison of natural ilmenites as oxygen carriers in chemical-looping combustion and influence of water gas shift reaction on gas composition," Chemical Engineering Research and Design, vol. 90, pp. 1351-1360, 2012.
    [41] H. Gu, L. Shen, Z. Zhong, X. Niu, H. Ge, Y. Zhou and S. Xiao, "Potassium-modified iron ore as oxygen carrier for coal chemical looping combustion: continuous test in 1 kWth reactor," Industrial & Engineering Chemistry Research, vol. 53, pp. 13006-13015, 2014.
    [42] X. Niu, L. Shen, S. Jiang, H. Gu and J. Xiao, "Combustion performance of sewage sludge in chemical looping combustion with bimetallic Cu–Fe oxygen carrier," Chemical Engineering Journal, vol. 294, pp. 185-192, 2016.
    [43] S. Jiang, L. Shen, X. Niu, H. Ge and H. Gu, "Chemical Looping Co-combustion of Sewage Sludge and Zhundong Coal with Natural Hematite as the Oxygen Carrier," Energy & Fuels, vol. 30, pp. 1720-1729, 2016.
    [44] H. Zhao, K. Wang, Y. Fang, J. Ma, D. Mei and C. Zheng, "Characterization of natural copper ore as oxygen carrier in chemical-looping with oxygen uncoupling of anthracite," International Journal of Greenhouse Gas Control, vol. 22, pp. 154-164, 2014.
    [45] S. Wang, M. Luo, G. Wang, L. Wang and M. Lv, "Analysis of reactivity of a CuO-based oxygen carrier for chemical looping combustion of coal," Energy & Fuels, vol. 26, pp. 3275-3283, 2012.
    [46] L. Zeng, F. He, F. Li and L.-S. Fan, "Coal-direct chemical looping gasification for hydrogen production: reactor modeling and process simulation," Energy & Fuels, vol. 26, pp. 3680-3690, 2012.

    無法下載圖示 全文公開日期 2022/07/23 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE