簡易檢索 / 詳目顯示

研究生: 沈頌强
Sung-Chiang Shen
論文名稱: 多孔質氣靜壓軸承靜動態特性之性能分析
Performance Analysis on Static and Dynamic Characteristics of Porous Media Aerostatic Bearing
指導教授: 林顯群
Sheam-chyun Lin
口試委員: 陳呈芳
Cheng-fang Chen
楊旭光
Hsu-kuang Yang
黃德言
Te-yin Huang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 166
中文關鍵詞: 承載能力剛性多孔質材料氣靜壓軸承
外文關鍵詞: Load capacity, Stiffness, Porous medium, Aerostatic bearing
相關次數: 點閱:175下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  隨著超精密產業之加工精度要求越來越高,氣靜壓軸承已逐漸取代滾珠軸承以及油壓軸承,成為超精密工具機之元件核心之ㄧ。雖然早期有研究探討氣靜壓軸承,但其節流器多採用孔口節流而非多孔質節流,但多孔質節流型式可使得氣靜壓軸承之承載能力與剛性提升,因此本研究將探討工具機模組內之多孔質氣靜壓止推軸承與軸頸軸承;採用計算流體力學軟體Fluent 進行模擬分析,藉流場可視化觀察軸承氣膜內之壓力分佈,並變更多項設計參數以探討其對軸承承載能力、剛性、表面平均壓力之關係。
  在分析氣靜壓軸承前,應確認需使用可壓縮流或不可壓縮流體設定較為恰當,故首先分析氣體壓縮性對氣靜壓止推軸承之影響,由模擬結果與物理現象分析判斷,氣靜壓軸承需使用可壓縮流計算模擬較為恰當。接著比較多孔質材料之流阻對氣靜壓止推軸承之影響,本研究所採用材料為多孔質石墨和多孔質氧化鋁,結果顯示因多孔質氧化鋁之流阻值較小,故若多孔質材料採用多孔質氧化鋁分析止推軸承時其承載能力較大,隨著轉速不同,兩者相差約10 至13 倍左右;最後分析多孔質柱塞厚度對氣靜壓止推軸承之影響,由結果顯示當多孔質柱塞厚度越薄其止推軸承之承載能力越大,數據顯示當多孔質柱塞厚度由10 mm 變更至4 mm 時,止推軸承承載能力可提升約6%。
  進一步將氣靜壓止推軸承之模擬方法延伸至氣靜壓軸頸軸承,首先為了要探討剛性與氣膜間隙厚度之關係,故分析主軸偏心率對氣靜壓軸頸軸承之影響;結果顯示當氣膜厚度越薄時其剛性提升約19 ~ 39 %,且當主軸轉速越快時,因動壓效應之因素故其剛性越明顯的提升。考慮模擬的真實性,本研究將機殼內表面與主軸表面之間的氣膜間隙稱之為機殼氣隙,而多孔質柱塞與主軸表面之間的氣膜間隙稱之為軸承氣隙,比較機殼氣隙與軸承氣隙對氣靜壓軸頸軸承之影響;由結果顯示當機殼氣隙越薄其主軸表面平均壓力越高,而軸承氣隙越薄則主軸表面平均壓力越低,例如當軸承氣隙由10 μm變薄至4 μm時,其主軸表面平均壓力下降了55 %,故機殼氣隙不能太厚且軸承氣隙不能太薄,將可提升主軸表面之平均壓力。本研究變更一系列設計參數,進而提升氣靜壓止推軸承以及軸頸軸承之平均壓力與剛性,並且觀察高轉速下動壓效應之物理現象,可供未來研發工具機或其他相關領域者之參考所用。


  This study investigates the performances of the porous-media aerostatic thrust and journal bearings via numerical simulation. Based on the finite-volume method and the pressure-velocity coupling SIMPLE scheme, this work utilizes the CFD software Fluent to solve the three dimensional, compressible Navier-Stokes equations for calculating the pressure and velocity fields inside the bearings. The effects of the air compressibility, the flow resistance of porous medium, the thickness of porous medium insert, the bearing gap, the housing gap, the eccentric ratio, and the rotational speed of the spindle on the characteristics of bearing such as the pressure distribution, the load carrying capacity, the surface average pressure and the stiffness are evaluated.
  At first, the appropriateness of compressible or incompressible for the analysis on aerostatic bearing is examined carefully. The computed results of thrust bearing reveal that, the compressible approach should be adopted for analyzing the aerostatic bearings. Later, porous graphite and porous alumina are selected for comparing the pressure distribution of thrust bearing. Because the porous graphite’s fluid resistance is larger, so the load capacity of porous-alumina bearing is considerably bigger comparing that of the porous-graphite bearing by 10 to 13 times for various spindle speeds. Additionally, the thickness of porous-medium insert is considered in analyzing its effect on aerostatic bearings. The numerical results illustrate that the load capacity increases about 6% when the thickness of porous medium varies form 10 mm to 4 mm.
  Subsequently, the simulation approach of the thrust bearing extends to
the journal bearings. At first, the analysis on the eccentric ratio of spindle for journal bearing shows that, the stiffness enlarges about 19~39% for a thinner gap. To enhance the practical validity of the simulation, the study also takes into account the ratio of the housing gap to bearing gap. The housing gap is the distance between the inner case surface and spindle surface, and the bearing gap is defined between the bottom surface of the
porous-medium insert and spindle surface. The calculations of journal bearing reveal that the average pressure on spindle surface becomes larger
when the housing gap is thinner. Also, the average pressure on spindle surface reduces 55% when bearing gap decreases form 10 to 4 μm. These results show the average pressure on spindle surface may reach the peak value when the housing gap is not too thick and the bearing gap is not too thin. In summary, the CFD study considers many parameters for enhancing the pressure and the stiffness of thrust bearing and journal bearing. Also, the physical phenomenon of dynamic-pressure effect inside the porous bearing is analyzed thoroughly for the high-speed spindle case, which can serve as an important design reference for engineering applications.

摘要 ABSTRACT 致謝 目錄 圖索引 表索引 符號索引 第一章 緒論 1.1 前言 1.2 文獻回顧 1.2.1 多孔質在氣靜壓止推軸承之應用 1.2.2 多孔質在氣靜壓軸頸軸承之應用 1.3 研究動機與方法 第二章 多孔質氣靜壓軸承設計 2.1 氣靜壓止推軸承之工作原理 2.2 氣靜壓軸頸軸承之工作原理 2.3 氣靜壓軸承節流器型式 2.4 多孔質材料 2.4.1 孔隙率 2.4.2 滲透係數 2.4.3 多孔質材料表面速度滑移 2.5 多孔質氣靜壓軸承簡介 2.6 多孔質氣靜壓軸承解析數學模型 2.6.1 多孔質材料內壓力分佈之推導 2.6.2多孔質氣靜壓止推軸承氣隙內壓力分佈之推導 2.6.3局部多孔質氣靜壓軸頸軸承氣隙內壓力分佈之推導 第三章 物理模式與數值方法 3.1 統御方程式 3.2 數值計算理論 3.2.1 離散化方式 3.2.2 速度與壓力偶合的處理 3.3 數值求解流程 3.4 紊流模式 3.5 壁面函數 3.6 邊界條件設定 第四章 實驗設備 4.1 多孔質材料孔隙率量測 4.2 流阻實驗 4.2.1 Darcy 定律 4.2.2 流阻實驗結果 第五章 數值模擬分析 5.1 數值模擬幾何與模型建立 5.2 網格建構與網格獨立性分析 5.2.1 網格建構 5.2.2 網格獨立性驗證 5.3 多孔質氣靜壓止推軸承數值模擬 5.3.1 氣體壓縮性下氣靜壓止推軸承比較 5.3.2 不同多孔質材料流阻下氣靜壓止推軸承比較 5.3.3 不同多孔質柱塞厚度下氣靜壓止推軸承比較 5.4 多孔質氣靜壓軸頸軸承數值模擬 5.4.1主軸偏心下氣靜壓軸頸軸承比較 5.4.2不同機殼氣隙下氣靜壓軸頸軸承比較 5.4.3不同軸承氣隙下氣靜壓軸頸軸承比較 第六章 結論與建議 6.1 結論 6.1.1 多孔質氣靜壓止推軸承模擬結果 6.1.2 多孔質氣靜壓軸頸軸承模擬結果 6.2 建議 參考文獻

[1] 歐陽渭城,“靜壓軸承-設計與應用”,機械技術出版社,1998 年。
[2] 十合晉一,“氣體軸承從設計到製造”,復漢出版社,1985 年。
[3] 趙惠英,田世傑,蔣莊德,“高精度氣體靜壓軸承剛度分析”,製造技術與機床,第11 期,21-23 頁,2003 年。
[4] 盧澤生,于雪梅,“基於分形理論多孔質石墨滲透率的研究”,製造技術與機床,第7 期,29-31 頁,2006 年。
[5] Tian, Y., “Static Study of the Porous Bearings by the Simplified Finite Element Analysis,” Wear, Vol. 218, No. 2, pp. 203-209, 1998.
[6] New way Air Bearingsweb site, www.newwayairbearings.com.
[7] Lin, J.R. and Hwang, C.C., “Hop Bifurcation to a Short Porous Journal Bearing System Using the Brinkman Model: Weakly Nonlinear Stability,” Tribology International, Vol. 35, No. 3, pp. 75-84, 2002.
[8] Luong, T.S., Potze, W., Post, J.B., Van Ostayen, R.A.J., and Van Beek, A., “Numerical and Experimental Analysis of Aerostatic Thrust Bearings with Porous Restrictors,” Tribology International, Vol. 37, No. 10, pp. 825-832, 2004.
[9]Willis, Rev. R., “On the Pressure Produced on a Flat Plate when Opposed to a Stream of Air Issuing from an Orifice in a Plane Surface,” Trans. Cambridge Philos. Soc., Vol. 3, Part 1, pp. 121-140, 1828.
[10] Hirn, G.A., “Sur les Pricipaux Phenomenes qui Presententles Frottement Mediats,” Bull. Soc., Ind. Mulhous, Vol. 26, No. 129, 1854.
[11] Reynolds, O., “On Theory of Lubrication and Its Application to Mr. Beauchamp Tower’s Experiments Including an Experimental Determination of the Viscosity of Olive Oil,” Phil. Trans. Roy. Soc., Vol. 177, 1886.
[12] Mongomery, A.G. and Sterry, F., “A Simple Air Bearing Rotor for Very High Rotation Speeds,” Atomic Energy Research Establishment, Harwell, Berks, England, AERE ED/R 1617, 1955.
[13] Sheinberg, S.A. and Shuster, V.G., “Resistance to Vibration of Hydrostatic Thrust Bearing,” Machine Tool, Vol. 31, No. 11, pp. 24-32, 1960.
[14] Garguilo, E.P. and Gilmour, P.W., “A Numerical Solution for the Design of Externally Pressurized Porous Gas Bearings,” Trans. ASME Journal Lub Tech, No. 10, pp. 810-817, 1968.
[15] Ishizawa, S. and Hori, E., “The Flow of a Viscous Fluid through a Porous Wall into a Narrow Gap,” Bul. JSME, Vol. 9, No. 36, pp. 810-817, 1966.
[16] Beavers, G.S. and Joseph, D.D., “Boundary Conditions at a Naturally Permeable Wall,” Journal of Fluid Mechanics, Vol. 30, No. 1, pp. 197-207, 1967.
[17] Prakash, J. and Vij, S.K., “Axially Undefined Porous Journal Bearings Considering Cavitation,” Wear, Vol. 22, pp. 1-14, 1972.
[18] Sparrow, E.M., Beavers, G.S., and Hwang, I.T., “Effect of Velocity Slip on Porous Walled Squeeze Films,” J. Lubr. Technol., Vol. 94, No. 3, pp. 260-265, 1972.
[19] Prakash, J. and Vij, S.K., “Effect of Velocity Slip in Axially Undefined Porous Bearings,” Wear, Vol. 38, pp. 245-263, 1976.
[20] Singh, K.C. and Rao, N.S., “Analysis of Aerostatic Porous Annular Thrust Bearings with Tilt,” Wear, Vol. 80, pp. 291-299, 1982.
[21] Singh, K.C. and Rao, N.S., “Static Characteristics of Aerostatic Porous Rectangular Thrust Bearings,” Wear, Vol. 77, pp. 229-236, 1982.
[22] Singh, K.C., Rao, N.S., and Majumdar, B.C., “Effect of Velocity Slip on the Performance of Aerostatic Porous Thrust Bearings with Uniform Film Thickness,” Wear, Vol. 88, pp. 323-333, 1983.
[23] Singh, K.C., Rao, N.S., and Majumdar, B.C., “Effects of Velocity Slip, Anisotropy and Tilt on the Steady State Performance of Aerostatic Porous Annular Thrust Bearings,” Wear, Vol. 97, pp. 51-63, 1984.
[24] Fourka, Mohamed and Bonics, Marc “Comparison between Externally Pressurized Gas Thrust Bearings with Different Orifice and Porous Feeding Systems,”Wear, Vol. 210, pp. 311-317, 1997.
[25] Kwan, Y.B.P. and Corbett, J., “A Simplified Method for the Correction of Velocity Slip and Inertia Effects in Porous Aerostatic Thrust Bearings,” Tribology International, Vol. 31, No.12, pp. 779-786, 1998.
[26] Luong, T.S., Potze, W., Post, J.B., van Ostayen, R.A.J., and van Beek,A., “Numerical and Experimental Analysis of Aerostatic Thrust Bearings with Porous Restrictors,” Tribology International, Vol. 37, pp. 825-832, 2004.
[27] Plante, J.S., Vogan, J., Tarek, E.A., and Slocum, A.H., “A Design Model for Circular Porous Air Bearings Using the 1D Generalized Flow Method,” Precision Engineering, Vol. 29, pp. 336-346, 2005.
[28] Wu, D.Z. and Tao, J.Z., “Analysis on the Static Performance of Porous Graphite Aerostatic Thrust Bearings,” International Conference on Computer Engineering and Technology, Vol. 5, pp. 112-115, 2010.
[29] 王彥欣,陳明飛,“氣靜壓主軸只推軸承設計與性能分析”,中國機械工程學會,第十七屆全國學術研討會論文集,2000 年。
[30] 林育廷,陳明飛,“具X 型配流槽氣勁壓軸承性能分析與應用”,中國機械工程學會,第十七屆全國學術研討會論文集,2000 年。
[31] 王彥欣,“氣靜壓主軸止推軸承之動壓效應分析與設計”,彰化師範大學工業教育研究所碩士論文,2000 年。
[32] Sneck, H. J. and Elwell, R. C., “The Externally Pressurized, Porous Wall, Gas-Lubricated Journal Bearing – II,” ASLE Trans., Vol. 8, No. 4, pp. 339-345, 1965.
[33] Majumdar, B.C., “Analysis of Externally Pressurized Porous Gas Journal Bearings-2,”Wear, Vol. 33, No. 1, pp. 37-43, 1975.
[34] Majumdar, B.C., “Whirl Instability of Externally Pressurized Gas-Lubricated Porous Journal Bearings,”Wear, Vol. 40, No. 2, pp. 141-153, 1976.
[35] Rao, N.S. and Majumdar, B.C., “Analysis of Pneumatic Instability of Externally Pressurized Porous Gas Journal Bearings,” Journal of Lubrication Technology, Transactions ASME, Vol. 101, No. 1, pp. 48-53, 1979.
[36] Rao, N.S. and Majumdar, B.C., “Dynamic Characteristics of Gas-Lubricated Externally Pressurized Porous Bearings with Journal Rotation I,” Journal of Lubrication Technology, Wear, Vol. 50, No. 1, pp. 59-70, 1978.
[37] Rao, N.S. and Majumdar, B.C., “Dynamic Characteristics of Gas-Lubricated Externally Pressurized Porous Bearings with Journal Rotation II,” Journal of Lubrication Technology, Wear, Vol. 50, No. 2, pp. 201-210, 1978.
[38] Szwarcman, M. and Gorez, R., “Design of Aerostatic Journal Bearings with Partially Porous Walls,” International Journal of Machine Tool Design and Research, Vol. 18, pp. 49-58, 1978.
[39] Rao, N.S., “Analysis of Aerostatic Porous Journal Bearings Using the Slip Velocity Boundary Conditions,”Wear, Vol. 76, No. 1, pp. 35-47, 1982.
[40] Singh, K.C., Rao, N.S., and Majumdar, B.C., “Effect of Slip Flow on the Steady State Performance of Aerostatic Porous Journal Bearings,” Journal of Tribology, Transactions of the ASME, Vol. 106, No. 1, pp. 156-162, 1984.
[41] Malik, M. and Rodkiewicz, C.M., “On Slip Flow Considerations in Gas Lubricated Porous Bearings,” Journal of Tribology, Transactions of the ASME, Vol. 106, No. 4, pp. 484-491, 1984.
[42] Malik, M. and Rodkiewicz, C.M., “Dynamical Behaviour of Externally Pressurized Gas-Lubricated Unloaded Porous Journal Bearings,” Proceedings of the Institution of Mechanical Engineers, Part C: Mechanical Engineering Science, Vol. 198, No. 4, pp. 33-41, 1984.
[43] Majumder, M.C. and Majumdar, B.C., “Theoretical Analysis of Pneumatic Instability of Externally Pressurized Porous Gas Journal Bearings Considering Velocity Slip,” Journal of Tribology, Vol. 110, No. 4, pp. 730-733, 1988.
[44] Majumder, M.C. and Majumdar, B.C., “Non-Linear Transient Analysis for an Externally Pressurized Porous Gas Journal Bearing,” Wear, Vol. 132, No. 1, pp. 139-150, 1989.
[45] Yoshimoto, S., Tozuka, H., and Dambara, S., “Static Characteristics of Aerostatic Porous Journal Bearings with a Surface-Restricted Layer,” Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, Vol. 217, No. 2, pp. 125-132, 2003.
[46] Hassini, M.A. and Mihai Arghir, “A Simplified Sonlinear Transient Analysis Method for Gas Bearings,” Journal of Lubrication Technology, Transactions ASME, Vol. 134, No. 1, pp. 1-12, 2012.
[47] 陳育斌,“氣體靜壓軸承動態性能分析與實驗研究”,大葉大學機械工程研究所碩士論文,1998 年。
[48] 黃韋倫,“高速氣靜壓主軸暨其軸承系統性能分析與實驗研究”,彰化師範大學機電工程研究所博士論文,2012 年。
[49] 王柏智,“多孔質氣靜壓軸承之性能模擬與實驗研究”,國立台灣科技大學機械工程系研究所碩士論文,2014 年。
[50] 陳志明,“工具機技術現況與發展趨勢”,工業技術研究院機械所,2014 年。
[51] 王雲飛,“氣體潤滑機理與氣體軸承設計”,機械工業出版社,1999。
[52] 于雪梅,“局部多孔質氣體靜壓軸承關鍵技術的研究”,哈爾濱工業大學博士論文,2007。
[53] Dullien, F.A.L., “Porous Media:Fluid Transport and Pore Structure,” Academic Press, 1992.
[54] 李柏勳,“非接觸是多孔氣浮平臺參數 設計之研究”,大葉大學工業工程與科技管理學系碩士論文,2010。
[55] Kumar, A. and Rao, N.S., “Steady State Performance of Finite Hydrodynamic Porous Journal Bearings in Turbulent Regimes,” Wear, Vol. 167, No. 2, pp. 121-126, 1993.
[56] Patankar, S. V. and Spalding, D. B., “A Calculation Procedure for Heat Mass and Momentum Transfer in Three-Dimensional Parabolic Flows,” International Journal of Heat Mass Transfer, Vol. 15, pp. 1787-1806, 1972.
[57] Micromeritics Instrument Corporationweb site, www.micromeritics.com.
[58] Horvath, G. and Kawazoe, K., “Method for the Calculation of Effective Pore Size Distribution in Molecular Sieve Carbon,” Journal of Chemical Engineering of Japan, Vol. 16, No. 6, pp. 470-475, 1983.
[59] ISO8573.1 Compressed Air, Contaminants and Purity Classes, 2010.

QR CODE