簡易檢索 / 詳目顯示

研究生: 張文璟
Wen-Ching Chang
論文名稱: 高滲透率再生能源電網之電池式儲能系統開發
Development of Battery Energy Storage Systems for High Penetration of Renewable Energy Grids
指導教授: 郭政謙
Cheng-Chien Kuo
口試委員: 張宏展
Hong-Chan Chang
陳鴻誠
Hung-Cheng Chen
黃維澤
Wei-Tzer Huang
李俊耀
Chun-Yao Lee
張建國
Chien-Kuo Chang
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2023
畢業學年度: 112
語文別: 中文
論文頁數: 108
中文關鍵詞: 再生能源高滲透率電池式儲能系統經濟調度削峰填谷虛擬慣性控制策略頻率變化率頻率最低點頻率穩態誤差
外文關鍵詞: Renewable energy, high penetration rate, battery energy storage system, economic dispatch, peak shaving and valley filling, virtual inertia control strategy, RoCoF, frequency nadir, steady-state frequency error
相關次數: 點閱:68下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年,許多國家設定減碳與淨零目標,推動能源轉型。大量的基於換流器資源加入電網,使得未來電網結構將發生變化。在未來新型電網的結構中,需要加入新的輔助服務系統與措施,以確保新型電網在能源轉型與實現淨零目標下,維持電網的頻率穩定性與可靠度。
    電池式儲能系統具備快速響應的能力,並且結合能源管理系統,提供多樣化輔助服務策略於新型電網,有效地提高新型電網的頻率穩定性與韌性。本論文主要針對電池式儲能系統在高滲透再生能源電網的頻率穩定度與韌性方面的應用策略進行研究與分析。因此,本論文提出的經濟調度模型具備能量型電池式儲能系統,其在淨負載的尖峰與低谷進行輔助儲能與釋能,避免再生能源發電系統發生棄電的情況。接續,將電池式儲能系統的頻率調節策略進行頻率響應分析。根據頻率響應分析結果,本論文提出兩種優化虛擬慣性控制策略的方法,並將提出的策略基於WECC二代通用模型與外部程式語言進行設計。基於台灣離島實際的電力系統背景與假設的再生能源裝置容量,對於提出的經濟調度模型與兩種優化的虛擬慣性控制策略進行驗證。根據模擬結果,評估了傳統慣性控制策略與兩種新穎慣性策略的限制頻率變化率、頻率最低點與頻率恢復方面的能力。最終,提出的新穎虛擬慣性控制策略解決了傳統虛擬慣性控制策略的頻率調節能力不足之處。提出的頻率響應分析結果、經濟調度模型與策略的動態模型可以幫助電力運營商設計高滲透率再生能源電網運行削峰填谷與虛擬慣性控制策略,以提高再生能源的利用率,以及系統的頻率穩定度與韌性。


    In recent years, many countries have set carbon reduction and net-zero goals to promote energy transformation. A large number of inverter-based resources are added to the power system, which will cause changes in the grid structure in the future. In the structure of the future new grid, new ancillary service systems and strategies need to be added to ensure that the new grid maintains the frequency stability and reliability under the energy transformation and net-zero goals.
    The battery energy storage system has the ability to respond quickly, and combined with the energy management system, provides diversified auxiliary service strategies for the new grid, effectively improving the frequency stability and reliability of the new grid. This paper mainly studies and analyzes the application strategies of battery energy storage systems in the frequency stability and reliability of high-penetration renewable energy grids. Therefore, the economic dispatch model proposed in this paper has an energy-based battery energy storage system, which assists in storage energy and release energy during the peaks and valleys of the net load to avoid power curtailment in the renewable energy power generation system. Next, conduct frequency response analysis on the frequency regulation strategy of the battery energy storage system. According to the frequency response analysis results, this paper proposes two methods to optimize the virtual inertia control strategy, and designs the proposed strategies based on the WECC second-generation general model and external programming language. Based on the actual power system background of Taiwan's offshore islands and the assumed conditions, the proposed economic dispatch model and two optimized virtual inertia control strategies are verified. According to the simulation results, the capabilities of RoCoF limitation, frequency nadir, and frequency recovery are evaluated in the proposed strategies. The proposed frequency response analysis results, economic dispatch model and dynamic model of the strategy can help power operators design peak-shaving and valley-filling and virtual inertia control strategies for high-penetration renewable energy grid operations to improve the utilization of renewable energy and stability of the system.

    中文摘要 I ABSTRACT II 誌  謝 III 目  錄 IV 符號索引 VI 圖 目 錄 XIII 表 目 錄 XVI 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究方法 4 1.3 文獻回顧 6 1.4 論文貢獻 9 1.5 論文大綱 11 第二章 再生能源與電池式儲能系統 13 2.1 再生能源發電系統的架構與種類 13 2.2 電池式儲能系統的種類與架構 15 2.3 電池式儲能系統的型式 18 2.4 電池式儲能系統的多樣性策略 21 2.5 電池式儲能系統的頻率調節策略 22 第三章 經濟調度與電池式儲能系統策略分析 30 3.1 經濟調度 30 3.2 系統頻率穩態特性 35 3.3 電池式儲能系統策略之頻率響應分析 39 3.3.1 高滲透率再生能源電網的控制系統 40 3.3.2 動態調節策略之頻率響應 41 3.3.3 虛擬慣性控制策略之頻率響應 47 3.4 電池式儲能系統策略之優化 52 第四章 電池式儲能系統頻率調節策略模擬 56 4.1 電池式儲能系統模型 56 4.2 電池式儲能系統頻率調節之動態模型 62 4.2.1 虛擬慣性控制策略之動態模型 62 4.2.2 優化虛擬慣性控制策略之動態模型 63 4.3 模擬情境 67 4.4 模擬結果 82 4.4.1 虛擬慣性控制策略模擬 82 4.4.2 虛擬慣性之區間控制策略模擬 85 4.4.1 虛擬慣性之權重控制策略模擬 89 4.5 虛擬慣性控制策略模擬分析 94 第五章 結論與未來展望 100 5.1 結論 100 5.2 未來展望 103 參考文獻 104

    [1] International Energy Agency, “Net Zero by 2050”, May. 2021.
    https://www.iea.org/reports/net-zero-by-2050
    [2] Australian Energy Market Operator, “Market Ancillary Services Specification and FCAS Verification Tool”, 2022.
    [3] National Grid ESO, “System Operability Framework - Operability Strategy Report 2022”, 2022.
    [4] H. P. Beck, and R. Hesse, “Virtual Synchronous Machine”, 9th Int. Conf. Electr. Power Qual. Utilisation, pp. 1-6. Oct. 2007.
    [5] J. Driesen, and K. Visscher, “Virtual Synchronous Generators," 2008 IEEE Power and Energy Society General Meeting - Conversion and Delivery of Electrical Energy in the 21st Century”, Pittsburgh, PA, USA, pp. 1-3, 2008.
    [6] K. Visscher, and S.W. H. D. Haan, “Virtual Synchronous Machines for Frequency Stabilisation in Future Grids with a Significant Share of Decentralized Generation”, CIRED Seminar 2008: SmartGrids for Distribution, Frankfurt, Germany, pp. 1-4. Jun. 2008.
    [7] Q. C. Zhong, and G. Weiss, “Synchronverters: Inverters That Mimic Synchronous Generators”, IEEE Trans. Ind. Electron, vol. 58, no. 4, pp. 1259-1267, Apr, 2011.
    [8] M. Guan, W. Pan, J. Zhang, Q. Hao, J. Cheng, and X. Zheng, “Synchronous Generator Emulation Control Strategy for Voltage Source Converter Stations”, IEEE Trans. Power Syst, vol. 30, no. 6, pp. 3093-3101, Nov. 2015.
    [9] V. Knap, S. K. Chaudhary, D. I. Stroe, M. Swierczynski, B. I. Craciun, and R. Teodorescu, “Sizing of an Energy Storage System for Grid Inertial Response and Primary Frequency Reserve”, IEEE Trans. Power Appar. Syst., vol. 31, no. 5, pp. 3447-3456, Sept. 2016.
    [10] Y. Yoo, S. Jung, and G. Jang, “Dynamic Inertia Response Support by Energy Storage System with Renewable Energy Integration Substation”, J. Mod. Power Syst. Clean Energy, vol. 8, no. 2, pp. 260-266, Mar. 2020.
    [11] H. Liu, C. Zhang, X. Peng, and S. Zhang, “Configuration of an Energy Storage System for Primary Frequency Reserve and Inertia Response of the Power Grid”, IEEE Access, vol. 9, pp. 41965-41975, 2021.
    [12] M. Yue, and X. Wang, “Grid Inertial Response-Based Probabilistic Determination of Energy Storage System Capacity Under High Solar Penetration”, IEEE Trans Sustain Energy, vol. 6, no. 3, pp. 1039-1049, Jul. 2015.
    [13] A. Bera, B. R. Chalamala, R. H. Byrne, and J. Mitra, “Sizing of Energy Storage for Grid Inertial Support in Presence of Renewable Energy”, IEEE Trans. Power Syst., vol. 37, no. 5, pp. 3769-3778, Sept. 2022.
    [14] U. Akram, N. Mithulananthan, R. Shah, and SA. Pourmousavi, “Sizing HESS as Inertial and Primary Frequency Reserve in Low Inertia Power System”, IET Renew Power Gener, vol. 15, no. 1, pp. 99-113, Jan. 2021.
    [15] L. Y. Lung, T. Y. Chou, W. C. Chang, W. C. Chang, and C. C. Kuo, “Development of Energy Storage Systems for High Penetration of Renewable Energy Grids”, Appl Sci, vol. 13, no. 21, pp. 1-18, Nov. 2023.
    [16] C. E. Okafor, and K. A. Folly, “Provision of Additional Inertia Support for a Power System Network Using Battery Energy Storage System”, IEEE Access, vol. 11, pp. 74936-74952, Jul. 2023.
    [17] NEOEN, “Virtual Machine Mode Test Summary Report”, Sept. 2022.
    [18] F. Blaabjerg, Y. Yang, D. Yang, and X. Wang, “Distributed Power-Generation Systems and Protection," Proc IEEE Inst Electr Electron Eng, vol. 105, no. 7, pp. 1311-1331, Jul. 2017.
    [19] 吳進忠,「再生能源併聯運轉對電力調度的挑戰與機會」,2018年。
    [20] A. Umer, N. Mithulananthan, S. Rakibuzzaman, and M. Federico, “A Review on Rapid Responsive Energy Storage Technologies for Frequency Regulation in modern power systems”, Renew Sust Energ Rev, vol. 120, Mar. 2020.
    [21] R. H. Lasseter, Z. Chen, and D. Pattabiraman, “Grid-Forming Inverters: A Critical Asset for the Power Grid”, IEEE Trans Emerg Sel Topics Power Electron, vol. 8, no. 2, pp. 925-935, Jun. 2020.
    [22] D. B. Rathnayake et al., “Grid Forming Inverter Modeling, Control, and Applications”, IEEE Access, vol. 9, pp. 114781-114807, 2021.
    [23] N. S. Gurule, J. Hernandez-Alvidrez, M. J. Reno, A. Summers, S. Gonzalez, and J. Flicker, “Grid-forming Inverter Experimental Testing of Fault Current Contributions”, 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC), Chicago, IL, USA, pp. 3150-3155, 2019.
    [24] IEEE PES Industry Technical Support Leadership Committee, “Impact of IEEE 1547 Standard on Smart Inverters and the Applications in Power Systems”, Aug. 2020.
    [25] Sandia National Laboratories, “Controls and Fault Response of Inverter-Based Resources”, IEEE PES General Meeting, 2021.
    [26] Australian Energy Market Commission, “Market Ancillary Service Specification”, Oct. 2022.
    [27] Taiwan Electric Power Company, “Power Trading Platform Management Specifications, Operating Procedures Revised General Instructions and Comparison Table”, 2023.
    [28] Eirgrid, and System Operator for Northern Ireland, “Shaping our Electricity Future a Roadmap to Achieve our Renewable Ambition”, 2021.
    [29] Hawaiian Electric, “Model Power Purchase Agreement for Renewable Dispatchable Generation (PV + BESS)”, Jul. 2019.
    [30] Hawaiian Electric, “Power Purchase Agreement for Renewable Dispatchable Generation (Wind + BESS) all Islands”, Dec. 2022.
    [31] Hawaiian Electric, “Customer Incentive Programs”, 2022.
    [32] Western Electricity Coordinating Council, “WECC Battery Storage Dynamic Modeling Guideline”, Nov. 2016.
    [33] Electric Power Research Institute, “Model User Guide for Generic Renewable Energy System Models”, Jun. 2015.
    [34] X. Xu, M. Bishop, D. G. Oikarinen, and C. Hao, “Application and Modeling of Battery Energy Storage in Power Systems”, CSEE J Power Energy Syst, vol. 2, no. 3, pp. 82-90, Sept. 2016.
    [35] Siemens Industry, “Model Library PSSE 34.6.1”, Jul. 2019.
    [36] 陳姵穎,「儲能系統動態儲備容量與能源套利之研究」,碩士論文,國立臺灣科技大學,2022年。
    [37] 陳在相、吳宗軒、黃維澤、楊念哲、劉庭佑、張永瑞、李奕德、何元祥,「再生能源高滲透孤島電網機組排程之研究」,中華民國第39 屆電力工程研討會,2018 年。
    [38] IBM, “Features”, 2024.
    https://www.ibm.com/products/ilog-cplex-optimization-studio

    無法下載圖示
    全文公開日期 2029/01/26 (校外網路)
    全文公開日期 2029/01/26 (國家圖書館:臺灣博碩士論文系統)
    QR CODE