簡易檢索 / 詳目顯示

研究生: 廖軒慕
Hsuan-Mu Liao
論文名稱: 基於線性漸變濾波片之高光譜影像儀於可見至近紅外光波段之設計、模擬與分析
Design, Simulation and Performance Analysis of Hyperspectral Imager in Visible-to-Near Infared Based on Linear Variable Filter
指導教授: 柯正浩
Cheng-Hao Ko
口試委員: 柯正浩
Cheng-Hao Ko
李敏凡
Ricky Lee
沈志霖
Chih-Lin Shen
學位類別: 碩士
Master
系所名稱: 工程學院 - 自動化及控制研究所
Graduate Institute of Automation and Control
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 104
中文關鍵詞: 線性漸變濾波器蒸鍍光學薄膜高光譜影像儀
外文關鍵詞: Linear variable filter, evaporation, optical film, hyperspectral imager
相關次數: 點閱:216下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 高光譜成像技術具備分析物質的能力,廣泛應用於農業、食品加工、礦物學、環境監測、藝術、深空探測等諸多領域。儀器的微型化與低成本已成為高光譜譜成像儀的一個重要發展方向,線性漸變濾光片光譜成像技術與傳統光柵分光技術相比,具有系統緊湊、結構簡單的優點,獲得了國內外研究機構的重視。
    本研究使用之薄膜厚度理論透過建立蒸鍍機台數學模型,於製程上加入蒸鍍機台相關參數、擋板高度設計等,並利用數值模擬軟體找出基板上之膜厚分佈及輪廓,判斷膜厚分佈中,相對厚度25%至75%為最佳線性度,利用此結果,找出不同擋板高度下,所求得線性漸變區寬度,應用於線性漸變濾波片穿透率光譜之表現。
    本實驗應用於可見至近紅外波段400 – 1000 nm進行膜堆設計,使用於業界廣泛使用的光學鍍膜設計軟體TF-Calc,分別以TiO2與SiO2作為高低折射率材料,使用對稱式的膜堆設計並優化,接著分析膜堆在線性漸變膜厚下的光譜表現,擬合穿透波長與其對應的薄膜厚度,確保線性度的可能性。
    於光譜儀成像系統上,本文提出光學模擬方法,根據膜堆漸變區寬度與波段選用合適偵測器,建立偵測器座標系統並確立理想光譜響應後,進一步分析不同的焦比與濾波片組裝誤差對實際光譜響應的影響,於系統實際組裝時可考慮到不同系統光譜分辨率的要求,選擇合適系統參數。


    Hyperspectral imaging technology has the ability to analyze substances,used in agriculture, food processing, mineralogy, environmental monitoring, art, deep space exploration and many other fields. The miniaturization and low cost of the instrument have become an important development direction of the hyperspectral spectrum imager. Linear variable filter spectral imaging technology has the advantages of compact system and simple structure compared with the traditional grating spectroscopic technology. Received the attention of domestic and foreign research institutions.
    The film thickness theory used in this research is to establish the mathematical model of the evaporation machine, add the relevant parameters of the evaporation machine and the height design of the baffle to the process, and use the numerical simulation software to find the film thickness distribution and contour on the substrate and judge In the film thickness distribution, the relative thickness of 25% to 75% is the best linearity. Using this result, find the width of the linear gradient area at different mask heights, and apply it to the performance of the linear variable filter transmittance spectrum.
    This experiment is applied to the design of the film stack in the visible-to-Near Infared 400 – 1000 nm. It is used in the industry's widely used optical coating design software TF-Calc. TiO2 and SiO2 are used as high and low refractive index materials, respectively. Then, analyze the spectral performance of the film stack under the linear gradient film thickness, fit the penetration wavelength and the corresponding film thickness, and ensure the possibility of linearity.
    On the spectrometer imaging system, this paper proposes an optical simulation method, selects a suitable detector according to the width and band of the linear area of the film stack, establishes the detector coordinate system and simulate the ideal spectral response, Analyze the effect of different optical parameters and system assembly errors on the actual spectral response. The influence of the actual spectral response can be taken into account when the system is actually assembled, and the appropriate system parameters can be selected.

    摘要 I Abstract II 致謝 IV 目錄 V 圖目錄 VII 表目錄 XII 第一章 序論 1 1.1 研究動機 1 1.2 研究目的 1 1.3 研究背景 2 1.4 研究架構 3 第二章 線性漸變濾波片之膜厚理論分析與設計 5 2.1 蒸鍍腔結構與薄膜厚度理論 5 2.2 蒸鍍系統加入局部擋板之分析 9 第三章 膜層結構設計與優化方法 13 3.1 膜層之反射與透射 13 3.2 光學薄膜軟體設計方法 17 3.3 模堆優化 23 第四章 可見至近紅外波段之膜堆設計 26 4.1 低通濾波膜堆設計 26 4.2 高通濾波膜堆設計 36 4.3 帶通濾波之光譜表現 45 第五章 線性漸變膜厚之模擬與分析 48 5.1 膜層厚度與位置關係 48 5.2 漸變膜厚之光譜表現與量子效應 58 5.3 膜層線性漸變關係之建立 85 第六章 成像系統之架構與模擬 88 6.1 LVF光譜成像系統與規格介紹 88 6.2 成像系統之模擬 89 6.3 結果分析與比較 94 第七章 結論 100 參考資料 102

    [1] O. Pust, "Linear Variable Filters (LVF) for Biomedical and Hyperspectral Imaging," in DELTA Optical Thin Film, 2014.
    [2] R. M. Samudraiah Desu, Ashutosh Kumar Jha, Senthil Kumar Arumugam, "A Spectro-radiometric Analysis of Ocean Colour Sensors and Proposal for a Miniature Hyper Spectral Imager for Future," Journal of the Indian Society of Remote Sensing, June 2018.
    [3] Huang H-L, Hal J. Bloom, Jeffery J. Puschell, "Wedge-filter Imaging Sounder for Humidity (WISH): a practical NPOESS P3I and geostationary," Multispectral and Hyperspectral Remote Sensing Instruments and Applications II, 20 January 2005.
    [4] Shen-En Qian, Martin Bergeron, Guennadi Kroupnik, “Concept study of Canadian hyperspectral mission,” IEEE Geoscience and Remote Sensing Symposium, pp. 2578-2581, 2014.
    [5] A. M. Mika, “Linear-wedge spectrometer,” SPIE Digital Library, 1990.
    [6] Y. H. Wu, “Development of Design Process for Second-Order Linear Variable Filters,” National Taiwan University of Science and Technology, Taipei, Taiwan, 2015.
    [7] C. T. Ma, “Fabrication of Short Wavelength Infared(900-1700nm) Linear Variable Filter and Its Performance Measurement and Analysis,” Taipei, Taiwan, 2016.
    [8] 李正中, 薄膜光學與鍍膜技術, 台北: 藝軒圖書出版社, 2012.
    [9] 張明生, “具膜厚補償效益之新型光學監控法,” 2007.
    [10] L. N. Acquaroli, “Matrix method for thin film optics,” Montreal (QC) H3C 3A7, Canada, September 21, 2018.
    [11] John Chilwell,Ian Hodgkinson, "Thin-films field-transfer matrix theory of planar multilayer waveguides and reflection from prism-loaded waveguides," JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, vol. 1, no. 7, pp. 742-753, 17 February 1984.
    [12] H. A. MacLeod, Thin film Optical Filters 4 th ed, Taylor & Francis Group, NY 2010.
    [13] T.Honda, R. R. McLeod and, “Improving the spectral resolution of wedged etalons and linear variable filters with incidence angle,” Optics Letters, pp. Vol. 30, No. 19, pp. 2647–2649., 2005.
    [14] L. I. Epstein, “The design of optical filter,” Journal of the Optical Society of America, pp. Vol.42, Issue11, pp. 806-810, 1952.
    [15] L. Hongbo, “Study of imaging hyperspectral technique based on linear variable filter,” 2018.
    [16] 呂孟哲, “可見光波段(400-1000nm)及短波紅外光波段(900-1700nm)帶通線性漸變濾玻片之設計與模擬及分析,” 台北, 2018.
    [17] J. Transon, “Survey of Hyperspectral Earth Observation Applications from Space in the Sentinel-2 Context,” remote sensing, 2018.
    [18] C. H. Ko, "Visible and near-IR range linear variable filter with two-dimensional modeling," in Novel Optical Systems Design and Optimization, 2018.
    [19] C. H. Ko, "Design and verification of a flat-field aberration-corrected concave blaze grating for hyperspectral imaging," in SPIE Commercial + Scientific Sensing and Imaging, 2016.
    [20] S. F. Wang, Y. Yuan, L. J. Su, “Measurement of the Spectral Characteristic Parameters of Linear Variable Filters,” Guangzi Xuebao/Acta Photonica Sinica , 2017.
    [21] S. Locknar, “Measurement and alignment of linear variable filters,” 於 Photonic Instrumentation Engineering V, 2018.

    無法下載圖示 全文公開日期 2025/07/25 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE