簡易檢索 / 詳目顯示

研究生: 蔡鴻宇
Hong-Yu Cai
論文名稱: 基於聚氨酯材料的環保感壓膠配方開發與分析
Development and Characterization of Pressure-Sensitive Adhesives based on Eco-Friendly Polyurethane Formulations
指導教授: 邱昱誠
Yu-Cheng Chiu
陳文章
Wen-Chang Chen
口試委員: 賴君義
Juin-Yih Lai
童世煌
Shih-Huang Tung
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 94
中文關鍵詞: Pressure sensitive adhesivePolyurethanePSAPU
外文關鍵詞: 感壓膠, 聚氨酯, 黏著劑
相關次數: 點閱:123下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 膠帶產業隨著工業化而迅速擴展,其中膠帶黏著層為提供黏著性質之關鍵,稱為感壓膠。然而,一般商用感壓膠通常為石化原料製品,既非生物基也不易生物降解,長久以來對環境已造成負擔。如今,科學家致力於發展可永續循環之高值化生質資源於相關材料。生物質聚氨酯材料之環境友善與容易取得特性逐漸受到關注,因此可以替代傳統的永久黏性材料。本研究中選用聚(己二酸丁二酯)( poly (butylene adipate), PBA)和聚丙二醇( polypropylene glycol, PPG)為軟鏈段之來源與異佛爾酮二異氰酸酯(isophorone diisocyanate, IPDI)組成預聚物,並控制鏈延長劑和交聯劑當量合成可生物降解的聚氨酯。其化學結構透過傅里葉變換紅外光譜(FT-IR)和凝膠滲透色譜法鑑定(GPC)。此外,使用熱重分析(TGA)和差示掃描量熱法(DSC)研究熱物理性質。除此之外,所使用之添加劑亦是生物質和可生物降解。配方基於聚氨酯主體混摻20 Phr松香酯增黏劑與0至20 Phr之非鄰苯二甲酸酯可塑劑,表現出剝離強度2.5-5.2 N cm-1、滾球初黏性23.4-7.3 cm和環形初黏性1.09-1.73 N cm-2之感壓膠性質,可與目前壓克力系標準測試膠帶相媲美。此外,透過高分子流變性質分析並驗證所有試樣皆滿足Dahlquist之初黏準則及分布於Chang 黏彈性窗口之通用需求感壓膠應用。因此,環保型聚氨酯感壓膠顯示出替代傳統黏著劑的巨大潛力。


    The tape industry is growing rapidly with an increase in industrialization, pressure sensitive adhesive (PSA) is the most popular category of tapes being researched. PSA is usually produced from petroleum-based chemicals which have many disadvantages. Nowadays, researchers focus on developing sustainable technologies and materials from renewable resources. Bio-based polyurethane can replace the traditional adhesive materials because it has low environmental impact, and it is easily obtained. In this study, poly (butylene adipate) (PBA) and polypropylene glycol (PPG) were used as a soft segment by the bridge of isophorone diisocyanate (IPDI) and also control the ratio of chain extender and crosslinker to synthesize biodegradable polyurethanes (PU). The chemical structures of the polymer are characterized by Fourier transform infrared spectroscopy and gel permeation chromatography. Moreover, the physical properties are investigated by using thermogravimetric analysis and differential scanning calorimetry. Other than that, the additives used in this study is also biomass and biodegradable. The host PU is combined with the rosin ester tackifier of 20 Phr and the non-phthalate plasticizer of 0−20 Phr. The PSA performance was evaluated showing peel strength of 2.5−5.2 N cm-1, rolling ball tack of 23.4−7.3 cm, and loop tack of 1.09−1.73 N cm-2, which are comparable to current acrylic standard test tape. Furthermore, the rheological properties of the materials were determined to analyze all samples that satisfied the Dahlquist criterion of tack and Chang's viscoelastic windows are applied as general-purpose PSAs Therefore, the environment friendly polyurethane pressure sensitive adhesive shows great potential to replace traditional adhesive material.

    Abstract I 摘要 III 目錄 IV 表目錄 VI 圖目錄 VII Chapter 1 緒論 1 1.1 前言 1 1.2 研究背景與動機 2 Chapter 2 基礎理論與文獻回顧 7 2.1 感壓膠與黏著劑的差異 7 2.2 接著理論 9 2.2.1 機械交互鎖扣理論(Mechanical interlocking Theory) 10 2.2.2 靜電理論(Electrostatic Theory) 10 2.2.3 吸附理論(Adsorption Theory) 11 2.2.4 擴散理論(Diffusion Theory) 12 2.3 感壓膠接著物性 13 2.3.1 初黏性質(Tack) 14 2.3.2 黏著強度(Bond strength/Peel Adhesion) 16 2.3.3 內聚力(Cohesion) 18 2.4 感壓膠的流變性質 19 2.5 感壓膠的組成 22 2.5.1 彈性體及黏彈性體 23 2.5.2 增黏劑 24 2.5.3 可塑劑 25 2.6 相關生質感壓膠研究 27 Chapter 3 實驗部分 32 3.1 實驗藥品 32 3.2 儀器 34 3.3 實驗步驟 35 3.3.1 感壓膠開發流程圖 35 3.3.2 聚氨酯合成步驟 36 3.3.3 添加劑配置與塗布方法 38 3.4 分析實驗方法 40 3.4.1 結構鑑定實驗 40 3.4.2 材料本質分析實驗 41 3.4.3 黏著物性分析實驗 42 Chapter 4 結果與討論 44 4.1 聚氨酯感壓膠材料合成與鑑定 44 4.2 主體材料熱性質分析 49 4.3 主體的黏著物性與流變性質 53 4.4 添加增黏劑的黏著性質 59 4.5 添加可塑劑的黏著性質 63 4.6 添加劑對熱性質的影響與相容性 66 4.7 添加劑對於流變性質的影響 69 Chapter 5 結論 75 參考文獻 76

    1. Kaur, G.; Uisan, K.; Ong, K. L.; Ki Lin, C. S., Recent Trends in Green and Sustainable Chemistry & Waste Valorisation: Rethinking Plastics in a circular economy. Current Opinion in Green and Sustainable Chemistry 2018, 9, 30-39.
    2. Clark, J. H., Green chemistry for the second generation biorefinery—sustainable chemical manufacturing based on biomass. Journal of Chemical Technology & Biotechnology 2007, 82 (7), 603-609.
    3. Braungart, M.; McDonough, W., Cradle to cradle : remaking the way we make things. 2019.
    4. Jang, Y.-S.; Kim, B.; Shin, J. H.; Choi, Y. J.; Choi, S.; Song, C. W.; Lee, J.; Park, H. G.; Lee, S. Y., Bio-based production of C2–C6 platform chemicals. Biotechnology and Bioengineering 2012, 109 (10), 2437-2459.
    5. Gross, R. A.; Kalra, B., Biodegradable Polymers for the Environment. Science 2002, 297 (5582), 803-807.
    6. Benedek, I. n., Technology of pressure-sensitive adhesives and products. CRC Press: Boca Raton, FL, 2009.
    7. Szycher, M., Szycher's handbook of polyurethanes. CRC: Boca Raton, Fla, 2013.
    8. Guelcher, S. A., Biodegradable Polyurethanes: Synthesis and Applications in Regenerative Medicine. Tissue Engineering Part B: Reviews 2008, 14 (1), 3-17.
    9. Mahajan, N.; Gupta, P., New insights into the microbial degradation of polyurethanes. RSC Advances 2015, 5 (52), 41839-41854.
    10. Adams, R. D., Adhesive bonding: science, technology and applications. Elsevier: 2005.
    11. Kinloch, A. J., Adhesion and adhesives : science and technology. Springer: 2010.
    12. Arnon, I., Structural adhesive joints in engineering. Elsevier applied Science: London; New York, N.Y., 1989.
    13. What is Industrial Adhesive Tapes? https://www.dic-global.com/.
    14. PSTC PRESSURE SENSITIVE TAPE. https://www.pstc.org/.
    15. Pizzi, A.; Mittal, K. L., Handbook of adhesive technology. 2018.
    16. Wake, W. C., Theories of adhesion and uses of adhesives: a review. Polymer 1978, 19 (3), 291-308.
    17. Artemov, A., Polishing nanodiamonds. Physics of the Solid State 2004, 46 (4), 687-695.
    18. Ayatollahi, M. R.; Alishahi, E.; Doagou-R, S.; Shadlou, S., Tribological and mechanical properties of low content nanodiamond/epoxy nanocomposites. Composites Part B: Engineering 2012, 43 (8), 3425-3430.
    19. Petrie, E. M. Adhesion Promoters: Adhesion Basics & Material Selection Tips for Adhesives. https://adhesives.specialchem.com/.
    20. Zisman, W. A., INFLUENCE OF CONSTITUTION ON ADHESION. Industrial & Engineering Chemistry 1963, 55 (10), 18-38.
    21. Derjaguin, B. V.; Aleinikova, I. N.; Toporov, Y. P., On the role of electrostatic forces in the adhesion of polymer particles to solid surfaces. Powder Technology 1969, 2 (3), 154-158.
    22. Sharpe, L. H.; Schonhorn, H., Surface Energetics, Adhesion, and Adhesive Joints. In Contact Angle, Wettability, and Adhesion, AMERICAN CHEMICAL SOCIETY: 1964; Vol. 43, pp 189-201.
    23. Goddard, W. A., Nature of the chemical bond. 1986.
    24. Minford, J. D.; Patrick, R. L., Treatise on adhesion and adhesives. Dekker: New York, N.Y., 1991.
    25. Baldan, A., Adhesion phenomena in bonded joints. International Journal of Adhesion and Adhesives 2012, 38, 95-116.
    26. Lin, C. B.; Lee, S.; Liu, K. S., The Microstructure of Solvent-Welding of PMMA. The Journal of Adhesion 1991, 34 (1-4), 221-240.
    27. Voyutskii, S. S.; Vakula, V. L., The role of diffusion phenomena in polymer-to-polymer adhesion. Journal of Applied Polymer Science 1963, 7 (2), 475-491.
    28. Gierenz, G.; Karmann, W., Adhesives and adhesive tapes. John Wiley & Sons: 2008.
    29. Michaelis, M.; Brummer, R.; Leopold, C. S., Plasticization and antiplasticization of an acrylic pressure sensitive adhesive by ibuprofen and their effect on the adhesion properties. European Journal of Pharmaceutics and Biopharmaceutics 2014, 86 (2), 234-243.
    30. PSTC, Glossary of Terms Used in Pressure Sensitive Tapes Industry. Glenview, 1974.
    31. ASTM, D907–08b (2008) Standard terminology of adhesives. ASTM International: West Conshohocken.
    32. Benedek, I., Pressure-sensitive adhesives and applications. CRC Press: 2004.
    33. Benedek, I.; Feldstein, M. M., Fundamentals of pressure sensitivity. CRC Press: Boca Raton, 2009.
    34. Czech, Z., Synthesis of removable and repositionable water-borne pressure-sensitive adhesive acrylics. Journal of Applied Polymer Science 2005, 97 (3), 886-892.
    35. Horgnies, M.; Darque-Ceretti, E.; Felder, E., Relationship between the fracture energy and the mechanical behaviour of pressure-sensitive adhesives. International Journal of Adhesion and Adhesives 2007, 27 (8), 661-668.
    36. Benedek, I., Pressure-Sensitive Design, Theoretical Aspects, Formulation, Application. Brill Academic Publishers: Zeist, 2005.
    37. Vendamme, R.; Schüwer, N.; Eevers, W., Recent synthetic approaches and emerging bio-inspired strategies for the development of sustainable pressure-sensitive adhesives derived from renewable building blocks. Journal of Applied Polymer Science 2014, 131 (17).
    38. Chang, E. P., Viscoelastic Windows of Pressure-Sensitive Adhesives. The Journal of Adhesion 1991, 34 (1-4), 189-200.
    39. Patrick, R. L. E., Treatise on Adhesion and Adhesives - Volume 2 : Materials. New York, NY, Marcel Dekker, 1969.
    40. Benedek, I., Pressure-sensitive formulation. VSP: Utrecht, the Netherlands; Boston, Mass., 2000.
    41. Benedek, I., Developments in pressure-sensitive products. CRC Press: 2005.
    42. Mehravar, E.; Gross, M. A.; Agirre, A.; Reck, B.; Leiza, J. R.; Asua, J. M., Importance of film morphology on the performance of thermo-responsive waterborne pressure sensitive adhesives. European Polymer Journal 2018, 98, 63-71.
    43. Deng, X., Progress on rubber-based pressure-sensitive adhesives. The Journal of Adhesion 2018, 94 (2), 77-96.
    44. Mecham, S.; Sentman, A.; Sambasivam, M., Amphiphilic silicone copolymers for pressure sensitive adhesive applications. Journal of Applied Polymer Science 2010, 116 (6), 3265-3270.
    45. Czech, Z.; Milker, R.; Malec, A., Crosslinking of PUR-PSA water-borne systems. Rev. Adv. Mater. Sci 2006, 12, 189-199.
    46. Fuensanta, M.; Vallino-Moyano, M. A.; Martín-Martínez, J. M., Balanced Viscoelastic Properties of Pressure Sensitive Adhesives Made with Thermoplastic Polyurethanes Blends. Polymers 2019, 11 (10), 1608.
    47. Kraus, G.; Rollmann, K. W., The entanglement plateau in the dynamic modulus of rubbery styrene–diene block copolymers. Significance to pressure-sensitive adhesive formulations. Journal of Applied Polymer Science 1977, 21 (12), 3311-3318.
    48. Tracton, A. A., Coatings materials and surface coatings. CRC Press: 2006.
    49. Freitag, W.; Stoye, D., Paints, coatings and solvents. John Wiley & Sons: 2008.
    50. Petrie, E. M., Handbook of adhesives and sealants. 2000.
    51. Benedek, I., Pressure-sensitive design and formulation, application. CRC Press: 2006.
    52. Bocqué, M.; Voirin, C.; Lapinte, V.; Caillol, S.; Robin, J.-J., Petro-based and bio-based plasticizers: Chemical structures to plasticizing properties. Journal of Polymer Science Part A: Polymer Chemistry 2016, 54 (1), 11-33.
    53. Finlay, M. R., Old Efforts at New Uses: A Brief History of Chemurgy and the American Search for Biobased Materials. Journal of Industrial Ecology 2003, 7 (3‐4), 33-46.
    54. Aranyi, C.; Gutfreud, K.; Hawrylewicz, E. J.; Wall, J. S. Pressure-sensitive adhesive tape comprising gluten hydrolypate derivatives. US Patent No. 3607370, 1971.
    55. Xu, J.; Liu, Z.; Erhan, S. Z.; Carriere, C. J., A potential biodegradable rubber—Viscoelastic properties of a soybean oil-based composite. Journal of the American Oil Chemists' Society 2002, 79 (6), 593-596.
    56. Ahn, B. K.; Kraft, S.; Wang, D.; Sun, X. S., Thermally Stable, Transparent, Pressure-Sensitive Adhesives from Epoxidized and Dihydroxyl Soybean Oil. Biomacromolecules 2011, 12 (5), 1839-1843.
    57. Wool, R.; Sun, X. S., Bio-Based Polymers and Composites. Elsevier Science: San Diego, 2011.
    58. Shin, J.; Martello, M. T.; Shrestha, M.; Wissinger, J. E.; Tolman, W. B.; Hillmyer, M. A., Pressure-Sensitive Adhesives from Renewable Triblock Copolymers. Macromolecules 2011, 44 (1), 87-94.
    59. Lee, S.; Lee, K.; Kim, Y.-W.; Shin, J., Preparation and Characterization of a Renewable Pressure-Sensitive Adhesive System Derived from ε-Decalactone, l-Lactide, Epoxidized Soybean Oil, and Rosin Ester. ACS Sustainable Chemistry & Engineering 2015, 3 (9), 2309-2320.
    60. Mishra, A. K.; Jena, K. K.; Raju, K. V. S. N., Synthesis and characterization of hyperbranched polyester–urethane–urea/K10-clay hybrid coatings. Progress in Organic Coatings 2009, 64 (1), 47-56.
    61. Kirpluks, M.; Cabulis, U.; Ivdre, A.; Kuranska, M.; Zieleniewska, M.; Auguscik, M., Mechanical and thermal properties of high-density rigid polyurethane foams from renewable resources. Journal of Renewable Materials 2016, 4 (1), 86-100.
    62. Coleman, M. M.; Lee, K. H.; Skrovanek, D. J.; Painter, P. C., Hydrogen bonding in polymers. 4. Infrared temperature studies of a simple polyurethane. Macromolecules 1986, 19 (8), 2149-2157.
    63. Litvinov, V. M.; De, P. P., Spectroscopy of rubbers and rubbery materials. Rapra Technology Ltd.: Shrewsbury, 2002.
    64. Trovati, G.; Sanches, E. A.; Neto, S. C.; Mascarenhas, Y. P.; Chierice, G. O., Characterization of polyurethane resins by FTIR, TGA, and XRD. Journal of Applied Polymer Science 2010, 115 (1), 263-268.
    65. Liu, X.; Hao, J.; Gaan, S., Recent studies on the decomposition and strategies of smoke and toxicity suppression for polyurethane based materials. RSC Advances 2016, 6 (78), 74742-74756.
    66. Leung, L. M.; Koberstein, J. T., DSC annealing study of microphase separation and multiple endothermic behavior in polyether-based polyurethane block copolymers. Macromolecules 1986, 19 (3), 706-713.
    67. Rubinstein, M.; Colby, R. H.; Gillmor, J. R., Dynamic scaling for polymer gelation. American Chemical Society, Polymer Preprints, Division of Polymer Chemistry 1989, 30 (1), 81-82.
    68. Winter, H. H.; Chambon, F., Analysis of linear viscoelasticity of a crosslinking polymer at the gel point. Journal of rheology 1986, 30 (2), 367-382.
    69. Callies, X.; Herscher, O.; Fonteneau, C.; Robert, A.; Pensec, S.; Bouteiller, L.; Ducouret, G.; Creton, C., Combined Effect of Chain Extension and Supramolecular Interactions on Rheological and Adhesive Properties of Acrylic Pressure-Sensitive Adhesives. ACS Applied Materials & Interfaces 2016, 8 (48), 33307-33315.
    70. Ho, K. Y.; Dodou, K., Rheological studies on pressure-sensitive silicone adhesives and drug-in-adhesive layers as a means to characterise adhesive performance. International Journal of Pharmaceutics 2007, 333 (1), 24-33.
    71. J. Vandenburg, H.; A. Clifford, A.; D. Bartle, K.; E. Carlson, R.; Carroll, J.; D. Newton, I., A simple solvent selection method for accelerated solvent extraction of additives from polymers. Analyst 1999, 124 (11), 1707-1710.
    72. Yamauchi, S.; Miyata, A. Composite of glass and hot melt composition and method of producing the same. 2009.
    73. Hosoda, M. Ring-containing modified resins and dispersants including it. US7786242B2, 2010.
    74. Everaerts, A.; Zieminski, K.; Nguyen, L.; Malmer, J., Cross-Linking of Hot-Melt-Processible Acrylic Pressure-Sensitive Adhesives using Acid/Base Interaction. The Journal of Adhesion 2006, 82 (4), 375-387.
    75. Yuan, B.; McGlinchey, C.; Pearce, E. M., Explanation of tackifier effect on the viscoelastic properties of polyolefin-based pressure sensitive adhesives. Journal of Applied Polymer Science 2006, 99 (5), 2408-2413.
    76. Kermanshahi pour, A.; Cooper, D. G.; Mamer, O. A.; Maric, M.; Nicell, J. A., Mechanisms of biodegradation of dibenzoate plasticizers. Chemosphere 2009, 77 (2), 258-263.
    77. Zhao, J.; Ediger, M. D.; Sun, Y.; Yu, L., Two DSC Glass Transitions in Miscible Blends of Polyisoprene/Poly(4-tert-butylstyrene). Macromolecules 2009, 42 (17), 6777-6783.
    78. Coleman, M. M. P. P. C. G. J. F., SPECIFIC INTERACTIONS AND THE MISCIBILITY OF POLYMER BLENDS. CRC PRESS: [S.l.], 2019.
    79. Fox, T. G., Influence of Diluent and of Copolymer Composition on the Glass Temperature of a Poly-mer System. Bull. Am. Phys. Soc. 1956, 1, 123.
    80. Yang, H. W. H., Water-based polymers as pressure-sensitive adhesives—viscoelastic guidelines. Journal of Applied Polymer Science 1995, 55 (4), 645-652.
    81. Lee, L.-H., Adhesive bonding. Plenum Press: New York, 1991.

    無法下載圖示 全文公開日期 2025/07/02 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE