簡易檢索 / 詳目顯示

研究生: 袁俊溢
Jiunn-Yi Yuan
論文名稱: 髕骨韌帶對模組化人工關節之附著影響分析
Effects of Attachment of Patella-Tendon to Modular Oncology Prosthesis
指導教授: 陳炤彰
Chao-Chang A. Chen
鄭逸琳
Yih-Lin Cheng
口試委員: 龍震宇
Chen-Yu Lung
蔡瑞瑩
none
楊榮森
Rong-Sen Yang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 112
中文關鍵詞: 髕骨韌帶模組化人工關節電腦輔助分析圓錐特徵骨柄骨水泥
外文關鍵詞: Modular joint prosthesis, Patella-tendon, Conical-collared intramedullary stem(CCIS), CAE, Bone cement
相關次數: 點閱:305下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

目前市售的訂製式模組化人工膝關節,髕骨韌帶附著的位置在中間,在實際人體內,左膝與右膝的韌帶附著位置是左右各不相同,本研究主要探討髕骨韌帶附著位置對膝關節受力的影響。研究方法中收集了50個膝關節資訊,定義了髕骨韌帶的長度、角度及脛股骨旋向。在韌帶受力分析方面,藉由豬隻鎖合脛骨裝置,討論三種裝置鎖合韌帶的影響及韌帶經由手術線支撐力附著人工關節的受力情形,討論韌帶附著對人工關節位置的影響差異。在建構模型方面,利用人體膝關節矢狀面之電腦斷層影像,建構了人體膝關節脛骨關節含骨水泥之三維有限元素模型,模擬訂製式人工膝關節植入脛骨內,人體單腳站立時的負載情形,施以500N的荷重,探討其各材質間的應力變化,並考慮了負載轉移的影響;進而改變骨柄角度0°、15°、 30°及 45°探討其受力影響,結果顯示15°的設計有較佳的受力。然後將脛、股骨基準面的旋向分為三個群組,分別討論原始韌帶位置及人工關節韌帶位置對各材質的影響,結果顯示,原始韌帶附著位置比人工關節附著位置,可降低人工關節10.8%的MVMS受力及密質骨20.8%的MVMS受力,對骨水泥及鬆質骨影響較小。若考慮韌帶軟組織廣泛附著面的結合力(300N至450N),增加人工關節11.2%、骨水泥4.2%及密質骨7.1%的MVMS受力,向上韌帶力愈大可抵消愈多向下的受力。本研究結果顯示,髕骨韌帶附著方式和位置與施力,明確影響人工關節之受力情形,可做臨床醫療之參考。


Attachment of patella-tendon to the modular knee joint prosthesis is usually fixed to the middle position, but it is different from original attachment location for left and right knee in human body. This research is to investigate the attachment effects of patella-tendon ( PT ) in modular oncology prosthesis. Total 50 subjects were collected in this research and CT images of human knee joint in sagittal plane were used to generate a three-dimensional model for defining PT length and rotation angle of tibiofemoral. An in-vitro experiment of pig PT were performed to obtain the strength of PT and to test three design of locking devices of PT of modular knee prosthesis. A finite-element model of human tibial joint consisting of cortical bone, cancellous bone, and bone cement was used to simulate the loading condition of standing by one leg with 500N loading. The model of prosthetical tibial stem inserted with various interface geometry of collar angle (0°, 15°, 30°, and 45°) are used to investigate the effect of loading transmission. Results show that the collar angle design of 15° indicates the smaller maximum von Mises stress ( MVMS ). Moreover, rotation angle of tibiofemoral is divided into three groups to discuss the influence of original and artificial PT position. Results show that different artificial PT position decreases 10.8% MVMS on implant and 20.8% MVMS on cortical bone only as compared with the original one. With attachment force as 300N and 450N to implant by the soft tissue of PT, MVMS on implant increased as 11.2%, MVMS on bone cement as 4.2%, and MVMS on cortical bone as 7.1%. Result of this research reveals the significance of attachment of PT in prosthesis and can be referred in oncology surgery.

摘要…………………………………………………………………………Ⅰ Abstract……………………………………………………………………Ⅱ 誌謝…………………………………………………………………………Ⅲ 目錄…………………………………………………………………………Ⅳ 圖目錄………………………………………………………………………Ⅶ 表目錄………………………………………………………………………Ⅹ 第一章 導論………………………………………………………………1 1-1 前言…………………………………………………………………1 1-2 研究動機與目的……………………………………………………2 1-3 膝關節之解剖構造包含髕骨、股骨及脛骨………………………3 1-3-1 脛股關節………………………………………………………4 1-3-2 髕股關節………………………………………………………4 1-4 訂製式模組化人工關節……………………………………………9 1-5 文獻回顧……………………………………………………………11 1-6 研究方法……………………………………………………………15 1-7 章節介紹……………………………………………………………18 第二章 軟組織附著位置之CAD模型建立…………………………………19 2-1 軟組織附著位置的定量分析………………………………………19 2-1-1 建構軟組織附著的三維模型流程……………………………19 2-1-2 軟組織附著位置視覺模型建立………………………………20 2-1-3 軟組織附著位置 CAD模型建立………………………………23 2-2 CAD殘肢脛股關節模型和Implant的組合…………………………26 2-3 軟組織附著位置對訂製式人工膝關節設計的考量………………28 第三章 定義軟組織(髕骨韌帶)的幾何資料…………………………33 3-1 50個膝關節髕骨韌帶實例的資料收集及彙整……………………34 3-2 膝髕骨韌帶長度的定義……………………………………………37 3-3 膝髕骨韌帶角度的定義……………………………………………39 3-3-1 方法一(股骨與脛骨角度)…………………………………42 3-3-2 方法二(股骨基準面與脛骨基準面)………………………44 3-3-3 討論方法一與方法二…………………………………………48 3-4 膝髕骨韌帶座標系定義及空間關係………………………………50 第四章 豬隻髕骨韌帶與訂製式膝關節鎖合裝置之生物力學測試……53 4-1 鎖合試件製作………………………………………………………53 4-2 材料和方法…………………………………………………………54 4-3 實驗儀器與步驟……………………………………………………57 4-4 實驗結果與討論……………………………………………………61 第五章 人工關節骨柄幾何特徵對植入脛骨的影響……………………63 5-1 分析方法……………………………………………………………63 5-1-1 三維影像模型建立……………………………………………63 5-1-2 人工膝關節分析模型建立……………………………………67 5-2 網格模型的受力及限制條件………………………………………75 5-3 改變人工關節骨柄推拔角…………………………………………79 5-3-1 實例一…………………………………………………………79 5-3-2 實例二…………………………………………………………82 5-3-3 不同角度的影響………………………………………………85 5-4 分析結果與討論……………………………………………………88 5-5 韌帶附著人工關節對植入脛骨的影響……………………………89 5-5-1 韌帶附著人工關節的影響……………………………………89 5-5-2 原始韌帶附著位置對人工關節偏移置入脛骨影響…………98 第六章 結果與討論………………………………………………………101 6-1 髕骨韌帶之長度與角度……………………………………………101 6-2 髕骨韌帶拉伸實驗…………………………………………………101 6-3 改變人工關節骨柄角度……………………………………………102 6-4 髕骨韌帶附著影響…………………………………………………103 第七章 結論與建議………………………………………………………105 7-1 結論…………………………………………………………………105 7-2 建議…………………………………………………………………106 參考文獻……………………………………………………………………107 作者簡介……………………………………………………………………112

[1]Bartel, D.L., Rawlinson, J. J., Burstein, A. H., Ranawat, C. S., Flynn, W. F., “Stresses in Polyethylene Components of Contemporary Total Knee Replacements”, Clini. Orthop. Rela. Resea., pp.76-82(1995)
[2]Godest, A.C., Beaugonin, M., Haug, E., Taylor, M., Gregson, P.J., “Simulation of Knee Joint Replacement During a Gait Cycle Using Explicit Finite Element Analysis”, Journal of Biomechanics, pp.267-275(2002)
[3]Liau, J.J., Hu, C.C., Cheng, C.K., Huang, C.H., Lo, W.H., “The Influence of Inserting a Fuji Pressure Sensitive Film Between the Tibiofemoral Joint of Knee Prosthesis on Actual Contact Characteristics”, Clinical Biomechanics, pp.160-166(2001)
[4]Jaffe, K.A., Dunham, W.K., “Custom hip and knee prosthesis for limb-salvage treatment of primary bone tumors”, Alabama Medicine 57, pp.11-12, 15-19(1987)
[5]聯合骨科器材公司,http://www.uoc.com.tw/
[6]劉江川,解剖學彩色圖譜,茂昌圖書有限公司,第417∼435頁,民國九十二年。
[7]Gross, A.E., “Revision total knee arthroplasty of bone grafts versus implant supplementation”, Orthopedics 20, pp.843-844(1997)
[8]Engh, G.A., Parks, N.L., “The management of bone defects in revision total knee arthroplasty”, Instructional Course Lectures 46, pp.227-236(1997)
[9]Scott, R.D., “Revision total knee arthroplasty”, Clin Orthop 226, pp.65-77(1988)
[10]Schindler, O.S., Cannon, S.R., Briggs, T.W., Blunn, G.W., “Stanmore custom-made extendible distal femoral replacements. Clinical experience in children with primary malignant bone tumours”, J Bone Joint Surg 79B, pp.927-937(1997)
[11]Roberts, P., Chan, D., Grimer, R.J., Sneath, R.S., Scales, J.T., “Prosthetic replacement of the distal femur for primary bone tumours”, J Bone Joint Surg 73B, pp.762-769(1991)
[12]Eckardt, J.J., Matthews, J.G., Eilber, F.R., “Endoprosthetic reconstruction after bone tumor resections of the proximal tibia”, Orthop Clin N Am 22, pp.149-160(1991)
[13]Barr, J.S., Eaton, R.G., “Elbow reconstruction with a new prosthesis to replace the displace the distal end of the humerus. A case report”, J Bone Joint Surg 47A, pp.1408-1413(1965)
[14]Yang, R.S., “Endoprosthetic reconstruction for limb salvage surgery”, Biomedical Engineering-Application, Basis and Communications 10, pp.23-34(1998)
[15]Yang, R.S., “The application of expandable endoprosthetic reconstruction for limb salvage surgery in the skeletally immature patients”, Biomedical Engineering-Application, Basis and Communications 13, pp.141-147(2001)
[16]Unwin, P.S., Cobb, J.P., Walker, P.S., “Distal femoral arthroplasty using custom-made prostheses. The first 218 case”, J Arthroplasty 8, pp.259-268(1993)
[17]Marco, V., “HIDE: a new hybrid environment for the design of custom-made hip prostyhesis”, Computer Methods and Programs in Biomedicine 64, pp.137-144(2001)
[18]Minns, R.J., Bibb, R., “The use of a reconstructed three-dimensional solid model form CT to aid the surgical management of a total knee arthroplasty: a case study”, Medical Engineering Physics 25, pp.523-526(2003)
[19]李思慧,“特製髖關節股骨柄設計流程之研究”,國立陽明大學醫學工程研究所碩士論文,2000
[20]Liau, J.J., Cheng, C.K., Huang, C.H., Lo, W.H., “The effect of Malalignment on Stresses in Polyethylene Component of Total Knee Prostheses – a Finite Element Analysis”, Clinical Biomechanics, pp.140-146(2002)
[21]Georg, N.D., Francesco M., “Mechanical conditions in the internal stabilization of proximal tibial defects”, Clinical Biomechanics 17, pp.64-72(2002)
[22]Jeremy, J., Donald, L., “Flat medial–lateral conformity in total knee replacements does not minimize contact stresses”, J. Biomechanics 35, pp.27-34(2002)
[23]彭珮雯,“利用有限元素探討DDH施行人工關節置換置後之應力分析”,國立陽明大學醫學工程研究所碩士論文,2003
[24]張祐誠,“人體膝關節韌帶傷害機轉的三維有限元素分析”,國立陽明大學醫學工程研究所碩士論文,1999
[25]洪啟峰,“三維膝關節電腦模型之建立及應用”,國立台灣大學醫學工程學研究所碩士論文,2003
[26]林宜鋒,“訂製式模組化人工關節植入柄之分析與設計”,國立台灣科技大學機械工程研究所碩士論文,2004
[27]Mandell, J.A., Carter, D.R., Goodman, S.B., Schurman, D.J., “A conical-collared intramedullary stem can improve stress transfer and limit micromotion”, Clinical Biomechanics 19, pp.695-703(2004)
[28]Mann, K.A., Bartel, D.L., Wright, T.M., Burstein, A.H., “Coulomb frictional interfaces in modeling cemented total hipreplacements: A more realistic model”, J. Biomech 28(9), pp.1067-1078(1995)
[29]Enderle, et al., “Introduction to Biomedical Engineering”, Academic Press(2000)
[30]美國材料試驗協會(ASTM)http://www.astm.org No.F451-99ae1 Standard Specification for Acrylic Bone Cement
[31]Ericson, M.O., Nisell, R., “Patellofemoral joint forces during ergometric cycling”, Phys Ther., 67(9), pp.1365-9.(1987)
[32]Perie, D., Hobatho, M.C., “In vivo determination of contact areas and pressure of the femorotibial joint using non-linear finite element analysis”, Clin Biomech 13, pp.394-402(1998)
[33]Miyoshi, S., Takahashi, T., “Analysis of the shape of the tibial tray in total knee arthroplasty using a three dimension finite element model”, Clin Biomech 17, pp.521-525(2002)
[34]Shelburne, K.B., Pandy, M.G., “A musculoskeletal model of the knee for evaluating ligament forces during isometric contractions”, J Biomech. 30(2), pp.163-76.(1997)
[35]Zavatsky, A.B., O’Connor, J.J. “A model of human ligaments in the sagittal plane. Part 1: Response to passive flexion”, Proceedings of Institution of Mechanical Engineers Part H, Journal of Engineering of Medicine 206, pp.125-134(1992)
[36]Toutoungi, D.E., Zavatsky, A.B., O’Connor, J.J., “Parameter sensitivity of a mathematical model of the anterior cruciate ligament”, Proceedings of Institution of Mechanical Engineers Part H, Journal of Engineering of Medicine 211, pp.235-246(1997)
[37]Wismans, J., Veldpaus, F., Janssen, J., Huson, A., Struben, P., “A three-dimensional mathematical model of the knee-joint”, Journal of Biomechanics 13, pp.677-685(1980)
[38]Dalstra, M., Huiskes, R., “ Load transfer across the pelvic bone”, J. Biomechanics 28(6), pp.715-724(1995)
[39]Yang, R.S., Chen, C.C., Lung, C.Y., Yuan, J.Y., “Effects of conical-collared intramedullary stem in modular hinged oncological prosthesis”
[40]Yang, R.S., Chen, C.C., Lung, C.Y., Hou, S.M., “Biomechanical test of the anchorage device of patellar tendon in oncological prosthesis”

無法下載圖示 全文公開日期 2006/07/28 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE