簡易檢索 / 詳目顯示

研究生: 蔡沛蒔
Pei-Shih Tsai
論文名稱: 功率補償之雙向光纖光柵式光交叉連接器研製
Study of Power-Compensated Bidirectional Fiber-Bragg-Grating-Based Optical Cross Connect
指導教授: 廖顯奎
Shien-Kuei Liaw
口試委員: 黃升龍
Sheng-Lung Huang
呂海涵
Hai-Han Lu
林淑娟
Shu-Chuan Lin
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 74
中文關鍵詞: 雙向光交叉連接器布拉格光纖光柵摻鉺光纖放大器分波多工
外文關鍵詞: bidirectional optical cross-connect, fiber Bragg grating, Er3+ doped fiber amplifier, wavelength division multiplexing
相關次數: 點閱:269下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文主要利用布拉格光纖光柵搭配光循環器等元件,設計出各種單、雙向光交叉連接器,並分析探討各光交叉連接器之傳輸特性。比起傳統陣列波導搭配光開關式光交叉連接器價格低、擴充易且新增雙向傳輸概念。在此我們提出若干種光交叉連接器之光路架構,針對其插入損失、串音干擾、傳輸功率償付值與疊加個數極限作一系列討論。
以傳統單向2×2光交叉連接器架構量測切入主題,我們以波道間距0.8 nm作為實驗標準,各切換模式下,插入損耗約在3~5 dB不等,頻帶內雜訊串音程度在-37 dB以下。對單向2×2 OXC架構加入2 m的摻鉺光纖作為補償增益介質,使成為無損的光交叉連接器,頻帶內雜訊串音程度仍可在-27.5 dB以下。利用特殊可循環光循環器的設計,進一步架構雙向2×2光交叉連接器,未補償前,各切換模式下插入損耗在4.5~5.5 dB之間,頻帶內雜訊串音程度在-34 dB以下;2 m的摻鉺光纖補償後,頻帶內雜訊串音在-34.18 dB以下。緊接著設計單向3×3光交叉連接器,各切換模式下最高的插入損耗為7.54 dB,雜訊串音在-30 dB以下,2m的摻鉺光纖功率補償後,雜訊串音仍可在-29.5 dB以下,雙向3×3光交叉連接器插入損耗為8.43 dB,雜訊串音在約-30 dB以下,3m的摻鉺光纖功率補償後,雜訊串音在-28 dB以下。單純雙向2×2與3×3光交叉連接器功率償付值皆小於0.3 dB,經過雙向單模光纖傳輸50 km,因光纖色散的原因功率償付值為1.32 dB。對傳輸中頻帶內串音與誤碼率的關係作量測,在誤碼率為10-9時,我們以功率償付值1 dB作為可忍受之極限範圍,推算出疊加之最大值,設計各光交叉連接器串聯模組數皆可在20個上下。以上結果可驗證其設計各光交叉連接器品質良好可用於傳輸。


The thesis mainly focuses on the design of uni- and bidirectional optical cross-connects (OXCs), which are based on fiber Bragg gratings (FBGs), optical circulators (OCs) and the related optical components. We also verify their characteristics in a lightwave subsystem. The issues of insertion loss, crosstalk and power penalty are discussed. Compared to array waveguide grating (AWG)-based multiplexers, our FBG-based OXCs are low-cost, easy to expand, and provide the bidirectional function.
Firstly, we measure the characteristics of a conventional 2×2 Uni-OXC which has channel spacing of 0.8 nm. For the design of Uni-OXC, 2 units of 3-port OCs and numerous tunable FBGs are included. The original central wavelengths of FBGs are matched to the corresponding wavelength division multiplexing (WDM) chanels. The insertion loss for either corss-connect or pass-through state is around 3~5 dB. The intraband crosstalk always maintains -37 dB or even lower. In order to make the OXCs as lossless devices, one piece of erbium-doped fiber (EDF) in 2 meters with small pump power are included in the OXC for power compensated purpose. The intraband crosstalk is still less than -27.5 dB. By adjusting the signals direction for arrival ot leaving the OCs, the function characteristics of 2×2 Bi-OXC are demonstrated. The power compensation is considered in a similar way as that of a 2x2 Uni-OXC. The intraband crosstalk is less than -34 dB in original. Using EDF to compensate the insertion loss, the intraband crosstalk is still less than -34.18 dB. The design of a 3×3 Uni-OXC is considered in a similar way as that of a 2x2 Uni-OXC. The insertion loss for a 3x3 OXC is around 7.54 dB. The intraband crosstalk is less than -30 dB in original. Using EDF to compensate the power loss, the intraband crosstalk is still less than -28 dB. For BER performance measurement the Bi-OXCs in 2x2 scale and 3x3 scale, The modulation speed up to 10 Gb/s, in non-return-to-zero (NRZ) format, is adopted. In back-to-back configuration with either OXC insert, the power penalty @10-9 BER is less than 0.3 dB. The power penalty will increase to 1.32 dB in 50 km standard fiber transmission, it is mainly due to the chromatic dispersion effect. Under the criteria of 1.0 dB power penalty @10-9 BER, the maximum allowable cascading OXC stages is up to 16. Note that the value is for a certain signal reflected by two individual FBGs. With high-quality and flexible characeterisitcs, the OXCs may find potential application in optical networks and lightwavel transmission.

目錄 摘要………………………………………………………………………I Abstract…………………………………………………………………II 致謝………………………………………………………………………III 目錄………………………………………………………………………IV 圖表索引…………………………………………………………………VI 第一章 緒論………………………………………………...…………1 1.1 前言…………………………………………………………1 1.2 研究動機……………………………………………………2 1.3 論文架構……………………………………………………3 第二章 光交叉連接器原理簡介與文獻探討…………………………4 2.1 OXC功能介紹與雙向OXC之重要性……………….………4 2.2 OXC的基本架構……………………………………………6 2.3 各種OXC核心技術之比較…………………………………8 2.4 光纖光柵式OXC組成原件原理與簡介………….………12 2.4.1 光纖光柵製作與原理…………………………………..12 2.4.2 光循環器原理簡介……………………………………..15 2.4.3 摻鉺光纖的放大原理……………………… .…………17 第三章 光交叉連接器之設計……………………………… ………20 3.1 波長可調光纖光柵研製…………………………………20 3.2 光交叉連接器架構設計…………………………………24 3.2.1 2×2 單向OXC架構……………………………………...24 3.2.2 3×3 Uni-OXC架構………………………..…………….25 3.2.3 2×2 Bi-OXC架構……………………….……………….27 3.2.4 3×3 Bi-OXC架構…………………..…………………..28 3.3 各實驗設計系統插入損失及探討………………………30 3.4 多階層的OXC架構……………………………………….34 3.4.1 4×4 OXC架構…………………………………………...34 3.4.2 多階層N×N OXC架構………………….……………....35 第四章 2×2光交叉連接器之量測…………………….…………….37 4.1 串音雜訊與功率償付值………………………………..37 4.2 2×2 OXC架構量測……………………………….………39 4.2.1. Uni-OXC量測平台……………………….……….…….39 4.2.2. 2×2 Uni-OXC架構量測…………………………...……40 4.2.3. 2×2功率補償Uni-OXC架構量測……………........…43 4.2.4. 2×2 Bi-OXC架構量測……………………………......45 4.2.5. 2×2功率補償Bi-OXC架構量測…………………...…..48 4.3 BER架構量測…………………………………………….51 4.3.1 BER與眼圖量測解說………………………….....……51 4.3.2 接收端眼圖…………………………………...….……52 4.3.3 2×2功率補償Bi-OXC架構BER量測……………........53 4.3.4 串音干擾與功率償付值分析……………………..……54 第五章 3×3光交叉連接器架構量測…………………………....…57 5.1 3×3 OXC架構量測…………………………….…………57 5.1.1 3×3 Uni-OXC架構量測…………………………...……57 5.1.2 3×3功率補償Uni-OXC架構量測………………....……60 5.1.3 3×3 Bi-OXC架構量測………………………………....62 5.1.4 3×3功率補償Bi-OXC架構量測………………….......64 5.2 BER架構量測. …………………………………….……66 5.2.1 3×3功率補償Bi-OXC架構BER量測……………........66 5.2.2 串音干擾與功率償付值分析……………………....…67 第六章 結論與未來展望……………………………………....….68 6.1 結論……………………………………………………..68 6.2 未來展望……………………………………..…….….69 參考文獻……………………………………………..……….…….70

[1]. K. C. Kao, and G. A. Hockham, “Dielectric-fibre surface waveguides for optical frequencies,” Proc. IEEE, vol. 13, pp. 1551-1558, 1966.
[2]. 廖顯奎 譯, “光纖通訊,” 高立圖書有限公司, 第一版, 台北, 2005。
[3]. ITU-T, “Recommendation G.707, network node interface for the synchronous digital hierarchy,” ITU-T, 2000.
[4]. S. Gunreben, and C.M. Gauger, “Dynamic bandwidth adaptation in NG SDH/WDM transport networks using LCAS,” 2005 Networks and Optical Conference, London, UK.
[5]. D. Cavendish, “Evolution of optical transport technologies: from SONET/SDH to WDM,” IEEE Communication Magazine, vol. 6, pp. 164-172, 2000.
[6]. E.B. Basch, R. Egorov, S. Gringeri, and S. Elby, “Architectural tradeoffs for reconfigurable dense wavelength-division multiplexing systems,” IEEE Selected Topics in Quantum Electronics, vol. 12, pp. 615-626, 2006.
[7]. A. Tzanakaki, L. Zacharopoulos, and I. Tomkos, “Optical add/drop multiplexers and optical cross-connects for wavelength routed networks,” 2003 International Conference on Transparent Optical Networks, Warsaw, Poland, pp. 41-46 .
[8]. R. Parthiban, “Modeling, and analysis of optical backbone networks,” University of Melbourne press, Australia, 2004.
[9]. X. Wu, X. Lu, Z. Ghassemlooy, and Y. Wang, “Evaluation of intraband crosstalk in an FBG-OC-based optical cross connect”, IEEE Photon. Technol. Lett., vol. 14, no. 2, pp. 212-214, 2002.
[10]. Y. K. Chen, and C. C. Lee, “Fiber Bragg grating-based large nonblocking multiwavelength cross-connects,” IEEE/OSA Journal of Lightwave Technology, vol. 16, no. 10, pp. 1746-1756, 1998.
[11]. Y. Joo, G. Lee, R. Kim, S. Park, K. Song, J. Koh, S. Hwang, Y. Oh, and C. Shim, “1-fiber WDM self-healing ring with bidirectional optical add/drop multiplexers,” IEEE Photon. Technol. Lett., vol. 16, no. 2, pp. 683-685, 2004.
[12]. S. K. Park, J. W. Park, S. R. Lee, H. Yoon, S. B. Lee, and S. S. Choi, “Multiwavelength bidirectional optical cross connect using fiber Bragg gratings and polarization beam splitter,” IEEE Photon. Technol. Lett., vol. 12, no. 7, pp. 888-890, 2000.
[13]. S. Kim, J. Kim, and B. Lee, “Optical cross-connect structures for interleaved multiwavelength bidirectional ring networks,” Electron. Lett., vol. 37, no. 18, pp. 1129-1130, 2001.
[14]. S. B. Park, C. H. Lee, S. G. Kang, and S. B. Lee, “Bidirectional WDM self-healing ring network for hub/remote nodes,” IEEE Photon. Technol. Lett., vol. 15, no. 11, pp. 1657-1659, 2003.
[15]. S. K. Liaw, W. L. Cheng, Y. S. Hsieh, C. L. Chang, and H. F. Ting, “Power compensated Bi-directional reconfigurable optical add/drop multiplexer using built-in optical amplifier,” Journal of Optical Networking, vol. 7, no. 7, pp. 662-672, 2008.
[16]. S. K. Liaw, S. L. Tzeng, and Y. J. Hung, “Rayleigh backscattering induced power penalty on bidirectional wavelength-reuse fiber systems ,” Optics Communications, vol. 188, pp. 63-67, no. 1-4, 2001.
[17]. S. K. Liaw, “Reduction of power penalty in bidirectional wavelength reused lightwave system using polarization-control,” IEICE TRANS. Communication, vol. E86-B, no. 5, pp. 1585-1590, 2003.
[18]. Y. Shen, X. Wu, C. Lu, T. H. Cheng, and M. K. Rao, “A novel single-fiber bidirectional optical add/drop multiplexer for distribution networks,” 2001 Optical Fiber Communication Conference, vol. 3, Anaheim, CA, USA, WY5-1-WY5-3.
[19]. R. Kaler, and R.S. Kaler, “Performance analysis of metro WDM network based on an optical cross connects and arrayed waveguide grating demultiplexer,” International Journal for Light and Electron Optics, vol. 122, no. 7, pp. 620-625, 2011.
[20]. H. Shimomura, T. Shiragaki, and N. Henmi, “Wavelength-division add/drop multiplexer using a single wavelength-filter and back-reflector switches,” 1998 Optical Fiber Communication Conference, San Jose, CA, USA, pp. 80-82.
[21]. S. Okamoto, A. Watanabe, and K. I. Sato, “Optical path cross-connect node architectures for photonic transport network,” IEEE/OSA Journal of Lightwave Technology, vol. 14, no. 6, pp. 1410-1422, 1996.
[22]. M. R. Karim, and S. P. Majumder, “Crosstalk modeling and analysis of FBG-OC-based bidirectional optical cross connects for WDM networks,” 2009 IEEE Region 10 Conference. TENCON, Singapore, pp. 1-6.
[23]. C. H. Chang, T. C. Liang, and C. Y. Huang, “DWDM self-healing access ring network with cost-saving crosstalk-free and bidirectional OADM in single fiber,” Optics Communications, vol. 282, no. 23, pp. 4518-4523, 2009.
[24]. L. Y. Lin, and E. L. Goldstein, “Micro-electro-mechanical systems (MEMS) for WDM optical crossconnect networks,” IEEE Conference on Military Communications, Atlantic City, NJ, USA, 1999.
[25]. T. W Yeow, K. L. E. Law, and A. Goldenberg, “MEMS optical switches, ” IEEE Communications Society, vol. 39, no. 11, pp. 158-163, 2001.
[26]. L. Sirleto, M. Iodice, F.G. Della, and I. Rendina, “Digital optical switch based on amorphous silicon waveguide,” Optics and Lasers in Engineering, vol. 45, no.12, pp. 458-462, 2007.

QR CODE