簡易檢索 / 詳目顯示

研究生: 張祐錡
Yu-Chi Chang
論文名稱: 常壓電漿氮化處理對AISI 304不鏽鋼抗衝擊磨損和耐蝕性能之研究
Study of Atmospheric Pressure Plasma Nitriding on Impact Wear and Corrosion Resistance of AISI 304 Stainless Steel
指導教授: 郭俞麟
Yu-Lin Kuo
口試委員: 趙振綱
Ching-Kong Chao
李志偉
Jyh-Wei Lee
許正勳
Cheng-Hsun, Hsu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 120
中文關鍵詞: 常壓電漿氮化處理AISI 304不鏽鋼抗衝擊磨損能力耐蝕性
外文關鍵詞: atmospheric pressure plasma nitriding (APPN), AISI 304 stainless steel, impact wear resistance, corrosion resistance
相關次數: 點閱:154下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報


第一章 緒論 1 1.1 前言 1 1.2 研究背景與目的 4 第二章 文獻回顧 5 2.1 不鏽鋼介紹 5 2.1.1 定義 5 2.1.2 合金元素對不鏽鋼的影響 6 2.1.3 實驗所使用之材料 10 2.2 氮化處理 11 2.2.1 介紹 11 2.2.2 氮化原理與技術 11 2.2.3 氮化層組織與性質 16 2.2.4 化合物層厚度的控制 18 2.2.5 氮化物形成元素 18 2.3 擴散介紹 20 2.3.1 定義 20 2.3.2 擴散機制 21 2.3.3 穩態擴散 22 2.3.4 非穩態擴散 24 2.4 電漿介紹 27 2.4.1 定義 27 2.4.2 原理及反應機制 28 2.4.3 崩潰電壓 33 2.4.4 非平衡電漿與平衡電漿 33 2.4.5 常壓電漿 34 2.5 腐蝕介紹 37 2.5.1 定義 37 2.5.2 化學腐蝕與電化學腐蝕 37 2.5.3 微電池 39 2.5.4 腐蝕電位與腐蝕速率 41 2.5.5 腐蝕電流及速度的測量方法 42 2.5.6 腐蝕型態 44 2.5.7 合金元素對不鏽鋼耐蝕性的影響 47 第三章 實驗方法 50 3.1 實驗設計 50 3.2 實驗材料 52 3.3 實驗步驟 53 3.3.1 AISI 304不鏽鋼之氮化前處理 53 3.3.2 常壓電漿噴射束之氮化處理流程 53 3.4 實驗設備 55 3.5 分析儀器 57 3.5.1 光學放射光譜儀 57 3.5.2 熱電偶溫度計 58 3.5.3 光學顯微鏡 59 3.5.4 場發射掃描式電子顯微鏡 60 3.5.5 X光繞射儀 61 3.5.6 維克氏硬度機 61 3.5.7 循環式動態衝擊試驗機 63 3.5.8 白光干涉儀 63 3.5.9 恆電位儀 64 第四章 結果與討論 66 4.1 電漿檢測 66 4.1.1 電漿物種分析 66 4.2 溫度測量 68 4.2.1 溫度分析 68 4.3 微結構觀察 71 4.3.1 光學顯微鏡用於不鏽鋼剖面之腐蝕形貌分析 71 4.3.2 場發射掃描式電子顯微鏡用於表面、剖面形貌分析 74 4.4 元素與晶體結構判定 77 4.4.1 能量散射光譜儀用於氮元素成分分析 77 4.4.2 X光繞射分析 79 4.5 機械性質分析 83 4.5.1 表面硬度分析 83 4.5.2 剖面硬度分析 85 4.5.3 衝擊試驗分析 88 4.6 電化學分析 90 4.6.1 動電位極化曲線分析 90 4.7 氮化機制推導 94 4.7.1 常壓電漿噴射束之氮化機制探討 94 4.7.2 氮化動力學探討 96 第五章 結論 98 第六章 未來展望 99 參考文獻 100

[1] Germany: Industry 4.0, European Commission, 2017.
[2] world steel association, https://www.worldsteel.org/.
[3] M. Oravcová, P. Palček, V. Zatkalíková, T. Tański and M. Król, “Surface treatment and corrosion behavior of austenitic stainless steel biomaterial,” Materials Science and Engineering, vol. 175, pp. 012009, 2017.
[4] R. Fazel-Rezai, Biomedical Engineering-From Theory to Applications. IntechOpen, 2011.
[5] 熱處理編輯委員會,熱處理,高立圖書有限公司,2006。
[6] 宇勵工業有限公司, https://www.yuli9698.com/.
[7] 寶龍傳動科技有限公司, https://www.blkg5546.com/.
[8] 冠通精密工業股份有限公司, http://www.greatekco.com.tw/.
[9] G. A. Collins, R. Hutchings, K. T. Short, J. Tendys, X. Li and M. Samandi, “Nitriding of austenitic stainless steel by plasma immersion ion implantation,” Surface & Coatings Technology, vol. 74-75, pp. 417-424, 1995.
[10] A. M. Kliauga and M. Pohl, “Effect of plasma nitriding on wear and pitting corrosion resistance of X2 CrNiMoN 22 5 3 duplex stainless steel,” Surface & Coatings Technology, vol. 98, pp. 1205-1210, 1998.
[11] W. Ensinger, “Modification of mechanical and chemical surface properties of metals by plasma immersion ion implantation,” Surface & Coatings Technology, vol. 100-101, pp. 341-352, 1998.
[12] K. Marchev, C. V. Cooper, J. T. Blucher and B. C. Giessen, “Conditions for the formation of a martensitic single-phase compound layer in ion-nitrided 316L austenitic stainless steel,” Surface & Coatings Technology, vol. 99, pp. 225-228, 1998.
[13] L. Wang, “Surface modification of AISI 304 austenitic stainless steel by plasma nitriding,” Applied Surface Science, vol. 211, pp. 308-314, 2003.
[14] E. Menthe, A. Bulak, J. Olfe, A. Zimmermann and K. -T. Rie, “Improvement of the mechanical properties of austenitic stainless steel after plasma nitriding,” Surface & Coatings Technology, vol. 133-134, pp. 259-263, 2000.
[15] T. Christiansen and M. A. J. Somers, “Low temperature gaseous nitriding and carburising of stainless steel,” Surface Engineering, vol. 25, pp. 445-455, 2005.
[16] M. Tsujikawa, N. Yamauchi, N. Ueda, T. Sone and Y. Hirose, “Behavior of carbon in low temperature plasma nitriding layer of austenitic stainless steel,” Surface & Coatings Technology, vol. 193, pp. 309-313, 2005.
[17] M. McGuire, Stainless Steels for Design Engineers. ASM International, 2008.
[18] S. J. Rosenberg and C. R. Irish, “Solubility of carbon in 18-percent-chromium-10-percent-nickel austenite,” Journal of Research of the National Bureau of Standards, vol. 48, pp.40-48, 1952.
[19] P. Lacombe, B. Baroux, G. Beranger, L. Colombier and J. Hochmann, Les Aciers inoxydables. Les Editions de Physique, 1990.
[20] R. A. Covert and A. H. Tuthill, “Stainless steels: an introduction to their metallurgy and corrosion resistance,” Dairy, Food and Environmental Sanitation, vol. 20, pp.506-517, 2000.
[21] P.-J. Cunat, Alloying Elements in Stainless Steel and Other Chromium-Containing Alloys. Euro Ionx, 2004.
[22] D. Pye, Practical NITRIDING and Ferritic Nitrocarburizing. ASM International, 2003.
[23] E. A. D. S. de Almeida, J. C. G. Milan, C. E. da Costa, “Acquired properties comparison of solid nitriding, gas nitriding and plasma nitriding in tool steels,” Materials Research, vol. 18, pp.27-35, 2015.
[24] 金重勳,熱處理,台灣復文興業股份有限公司,1998。
[25] 余煥騰,金屬熱處理學,六合出版社,1998。
[26] F. Czerwinski, Heat Treatment-Conventional and Novel Applications. InTech, 2012.
[27] A. Bernal, “Investigation on nitriding with emphasis in plasma nitriding process, current technology and equipment: review article,” Royal Institute of Technology Materials Processing, pp.12, 2006.
[28] W. D. Callister, Jr., Materials Science and Engineering: An Introduction. John Wiley, 2003.
[29] C. Tendero, C. Tixier, P. Tristant, J. Desmaison and P. Leprince, “Atmospheric pressure plasma: A review,” Spectrochimica Acta Part B: Atomic Spectroscopy, vol. 61, pp.2-30, 2006.
[30] M. A. Lieberman and A. J. Lichtenberg, Principles of Plasma Discharges and Materials Processing. Wiley-Interscience, 2005.
[31] A. Bogaerts, E. Neyts, R. Gijbels and J. van der Mullen, “Gas discharge plasmas and their applications,” Spectrochimica Acta Part B: Atomic Spectroscopy, vol. 57, pp. 609-658, 2002.
[32] 郭福升,大面積常壓電漿技術之研究,碩士論文,國立成功大學化學工程系,2003。
[33] 王憲柏,以常壓電漿噴射束於SKD11模具鋼表面硬化處理之研究,碩士論文,國立台灣科技大學機械工程系,2018。
[34] K. L. Chopra and S. R. Das, Thin Film Solar Cells. Springer Science + Business Media, 1983.
[35] B. Eliasson and U. Kogelschatz, “Nonequilibrium volume plasma chemical processing,” IEEE transaction on plasma science, vol. 19, pp.1063-1077, 1991.
[36] J. R. Roth, Industrial Plasma Engineering-Volume 1: Principles. Institute of Physics Publishing, 1995.
[37] 何政昌,常壓電漿技術之研究,碩士論文,國立成功大學化學工程系,2003。
[38] 張家豪、魏鴻文、翁政輝、柳克強、李安平、寇崇善、吳敏文、曾錦清、蔡文發、鄭國川,電漿源原理與應用之介紹,物理雙月刊,第二十八卷,第二期,2006年4月。
[39] A. W. Weimer, Carbide, Nitride and Boride Materials Synthesis and Processing. Chapman & Hall, 1997.
[40] M. I. Boulos, “Thermal plasma processing,” IEEE Transaction on Plasma Science, vol. 19, pp. 1078-1089, 1991.
[41] R. W. Revie and H. H. Uhlig, Corrosion and Corrosion Control: An Introduction to Corrosion Science and Engineering. Wiley-Interscience, 2008.
[42] R. G. Kelly, J. R. Scully, D. W. Shoesmith and R. G. Buchheit, Electrochemical Techniques in Corrosion Science and Engineering. Marcel Dekker, Inc., 2003.
[43] P. R. Roberge, Handbook of Corrosion Engineering. McGraw-Hill, 2000.
[44] 熊楚強、王月,電化學,文京圖書,2004。
[45] M. Niinomi, Metals for Biomedical Devices. Elsevier Ltd, 2019.
[46] N. Perez, Electrochemistry and Corrosion Science. Kluwer Academic Publishers, 2004.
[47] D. Lee, H. Lee and H. Jeong, “Slurry components in metal chemical mechanical planarization (CMP) process: A review,” International Journal of Precision Engineering and Manufacturing, vol. 17, pp. 11751-1762, 2016.
[48] P. A. Schweitzer, Metallic Materials: Physical, Mechanical, and Corrosion Properties. Marcel Dekker, Inc., 2003.
[49] L. L. Shreir, R. A. Burstein and G. T. Burstein, Corrosion. Volume 1: Metal / Environment Reactions. Butterworth-Heinemann, 1994.
[50] M. Kutz, Handbook of Environmental Degradation of Materials. Elsevier Inc., 2012.
[51] 廖啟民,不鏽鋼的沿晶腐蝕和應力腐蝕破裂,防蝕工程,第三卷,第一期,1989年12月。
[52] 謝曉華,不鏽鋼在水溶液中的抗蝕性,防蝕工程,第四卷,第一期,1990年3月。
[53] 陳鴻賓,不鏽鋼的耐腐蝕性,防蝕工程,第六卷,第一期,1992年3月。
[54] K. Osozawa, N. Okato, Y. Fukase and K. Yokota, “Effects of alloying elements on the pitting corrosion of stainless steels,” Corrosion Engineering, vol. 24, pp. 1-7, 1975.
[55] M. P. Vaughan, Optics. University College Cork, 2014.
[56] T. W. Kerlin and M. Johnson, Practical Thermocouple Thermometry. International Society of Automation (ISA), 2012.
[57] T. S. Tkaczyk, Field Guide to Microscopy. The Society of Photo-Optical Instrumentation Engineers (SPIE), 2010.
[58] A. UI-Hamid, A Beginners’ Guide to Scanning Electron Microscopy. Springer Nature Control Switzerland AG, 2018.
[59] A. Guinier, X-Ray Diffraction: In Crystals, Imperfect Crystals, and Amorsphous Bodies. W. H. Freeman and Company, 1963.
[60] Y. Waseda, E. Matsubara and K. Shinoda, X-Ray Diffraction Crystallography: Introduction, Examples and Solved Problems. Springer-Verlag Berlin Heidelberg, 2011.
[61] K. Herrmann, Hardness Testing: Principles and Applications. ASM International, 2011.
[62] K. Geels, D. B. Fowler, W.-U. Kopp and M. Rückert, Metallographic and materialographic specimen preparation, light microscopy, image analysis and hardness testing. ASTM International, 2007.
[63] J. J. Gilman, Chemistry and Physics of Mechanical Hardness. John Wiley & Sons, Inc., 2009.
[64] A. R. Franco Jr., G. Pintaúde, A. Sinatora, C. E. Pinedo and A. P. Tschiptschin, “The use of a Vickers indenter in depth sensing indentation for measuring elastic modulus and Vickers hardness,” Materials Research, vol. 7, pp. 483-491, 2004.
[65] J. L. Mo, M. H. Zhu, A. Leyland and A. Matthews, “Impact wear and abrasion resistance of CrN, AlCrN and AlTiN PVD coatings,” Surface & Coatings Technology, vol. 215, pp. 170-177, 2013.
[66] P. Pavliček and E. Mikeska, “White-light interferometer without mechanical scanning,” Optics and Lasers in Engineering, vol. 124, pp. 105800, 2020.
[67] F. F. Chen, “Langmuir probe analysis for high density plasmas,” Physics of Plasmas, vol. 8, pp. 3029, 2001.
[68] 劉沖明、吳峰賓、宋大崙,自我補償式蘭牟爾探針之製作與量測,龍華科技大學學報,第27期,2009年6月。
[69] 簡士傑,大氣電漿束之電漿特性與應用之研究,博士論文,國立清華大學物理學系,2013。
[70] Y. W. Hsu, Y. J. Yang, C. Y. Wu and C. C. Hsu, “Downstream characterization of an atmospheric pressure pulsed arc jet,” Plasma Chem. Plasma Process., vol. 30, pp. 363-372, 2010.
[71] Y. T. Xi, D. X. Liu and D. Han, “Improvement of corrosion and wear resistances of AISI 420 martensitic stainless steel using plasma nitriding at low temperature,” Surface & Coating Technology, vol. 202, pp. 2577-2583, 2008.
[72] Z. W. Yu, X. L. Xu, L. Wang, J. B. Qiang and Z. K. Hei, “Structural characteristics of low-temperature plasma-nitrided layers on AISI 304 stainless steel with an α′-martensite layer,” Surface & Coating Technology, vol. 153, pp. 125-130, 2002.
[73] M. R. Menezes, C. Godoy, V. T. L. Buono, M. M. M. Schvartzman and J. C. A-B Wilson, “Effect of shot peening and treatment temperature on wear and corrosion resistance of sequentially plasma treated AISI 316L steel,” Surface & Coating Technology, vol.309, pp. 651-662, 2017.
[74] F. M. El-Hossary, “The influence of surface microcracks and temperature gradients on the rf plasma nitriding rate,” Surface & Coating Technology, vol. 150, pp. 277-281, 2002.
[75] F. M. El-Hossary, N. Z. Negm, S. M. Khalil and M. Raaif, “Surface modification of titanium by radio frequency plasma nitriding,” Thin Solid Film, vol. 497, pp. 196-202, 2006.
[76] B. Paosawatyanyong, J. Pongsopa, P. Visuttipitukul and W. Bhanthumnavin, “Nitriding of tool steel using dual DC/RFICP plasma process,” Surface & Coating Technology, vol. 306, pp. 351-357, 2016.
[77] F. Mahboubi and K. Abdolvahabi, “The effect of temperature on plasma nitriding behaviour of DIN 1.6959 low alloy steel,” Vacuum, vol. 81, pp. 239-243, 2006.
[78] K. T. Cho, K. Song, S. H. Oh, Y. K. Lee and W. B. Lee, “Enhanced surface hardening of AISI D2 steel by atomic attrition during ion nitriding,” Surface & Coating Technology, vol. 251, pp. 115-121, 2014.
[79] K. T. Cho, Y. K. Lee and W. B. Lee, “Wear behavior of AISI D2 steel by enhanced ion nitriding with atomic attrition,” Tribology International, vol. 87, pp. 82-90, 2015.
[80] T. Peng, X. Zhao, Y. Chen, L. Tang, K. Wei and J. Hu, “Improvement of stamping performance of H13 steel by compound-layer free plasma nitriding” Surface Engineering, vol. 36, pp. 492-497, 2020.
[81] Y. Li, Y. He, W. Wang, J. Mao, Y. Zhu and Q. Ye, “Plasma Nitriding of AISI 304 Stainless Steel in Cathodic and Floating Electric Potential: Influence on Morphology, Chemical Characteristics and Tribological Behavior,” J. Mater. Eng. Perform., vol. 27, pp. 948-960, 2018.
[82] J. C. Stinville, P. Villechaise, C. Templier, J. P. Riviere and M. Drouet, “Plasma nitriding of 316L austenitic stainless steel: Experimental investigation of fatigue life and surface evolution,” Surface & Coating Technology, vol. 204, pp. 1947-1951, 2010.
[83] F. Borgioli, E. Galvanetto and T. Bacci, “Influence of surface morphology and roughness on water wetting properties of low temperature nitrided austenitic stainless steels,” Material Characterization, vol. 95, pp. 278-284, 2014.
[84] T. Balusamy, T. S. N. S. Narayanan, K. Ravichandran, I. S. Park and M. H. Lee, “Plasma nitriding of AISI 304 stainless steel: Role of surface mechanical attrition treatment,” Material Characterization, vol. 85, pp. 38-47, 2013.
[85] X. Qin, X. Guo, J. Lu, L. Chen, J. Qin and W. Lu, “Erosion-wear and intergranular corrosion resistance properties of AISI 304L austenitic stainless steel after low-temperature plasma nitriding,” Journal of Alloys and Compounds, vol. 698, pp. 1094-1101, 2017.
[86] L. Shen, L. Wang, Y. Wang and C. Wang, “Plasma nitriding of AISI 304 austenitic stainless steel with pre-shot peening,” Surface & Coating Technology, vol. 204, pp. 3222-3227, 2010.
[87] M. Jayalakshmi, B. R. Bhat and K. U. Bhat, “Effect of shot peening coverage on surface nanostructuring of AISI 316L stainless steel and its influence on low temperature plasma-nitriding,” Materials Performance and Characterization, vol. 6, pp. 561-570, 2017.
[88] N. Mingolo, A. P. Tschiptschin and C. E. Pinedo, “On the formation of expanded austenite during plasma nitriding of an AISI 316L austenitic stainless steel,” Surface & Coating Technology, vol. 201, pp. 4215-4218. 2006.
[89] L. Gil, S. Brühl, L. Jiménez, O. Leon, R. Guevara and M. H. Staia, “Corrosion performance of the plasma nitride 316L stainless steel,” Surface & Coating Technology, vol. 201, pp. 4424-4429. 2006.
[90] H. Nagamatsu, R. Ichiki, Y. Yasumatsu, T. Inoue, M. Yoshida, S. Akamine and S. Kanazawa, “Steel nitriding by atmospheric-pressure plasma jet using N2/H2 mixture gas,” Surface & Coating Technology, vol. 225, pp. 26-33, 2013.
[91] Y. Li, L. Wang, J. Xu and D. Zhang, “Plasma nitriding of AISI 316L austenitic stainless steels at anodic potential,” Surface & Coating Technology, vol. 206, pp. 2430-2437, 2012.
[92] K. Shukla, Y. P. Purandare, I. Khan, A. P. Ehiasarian and P. E. H. Hovsepian, “Effect of nitriding voltage on the impact load fatigue and fracture toughness behaviour of CoCrMo alloy nitrided utilising a HIPIMS discharge,” Surface & Coating Technology, vol. 400, pp. 126227, 2020.
[93] S. Tianmin, H. Meng and T. H. Yuen, “Impact behavior of laser hardened hypoeutectoid 2Cr13 martensite stainless steel,” Wear, vol. 255, pp. 444-455, 2003.
[94] K. Osozawa, N. Okato, Y. Fukase, K. Yokota, “Effects of alloying elements on the pitting corrosion of stainless steels,” Corrosion Engineering, vol. 24, pp. 1-7, 1975.
[95] A. Basu, J. D. Majumdar, J. Alphonsa, S. Mukherjee and I. Manna, “Corrosion resistance improvement of high carbon low alloy steel by plasma nitriding,” Materials Letters, vol. 62, pp. 3117-3120, 2008.
[96] F. A. P. Fernandes, S. C. Heck, R. G. Pereira, C. A. Picon, P. A. P. Nascente and L. C. Casteletti, “Ion nitriding of a superaustenitic stainless steel: Wear and corrosion characterization,” Surface & Coating Technology, vol. 204, pp. 3087-3090, 2010.
[97] S. Girija, U. K. Mudali, C. Andreev, L. Ninova and B. Raj, “Corrosion behavior of nitrogen-containing stainless steel in nitric acid and chloride environments,” Corrosion, vol. 68, pp. 922-931, 2012.
[98] F. M. Bayoumi and W. A. Ghanem, “Effect of nitrogen on the corrosion behavior of austenitic stainless steel in chloride solutions,” Materials Letters, vol. 59, pp. 3311-3314, 2005.
[99] C. X. Li and T. Bell, “Corrosion properties of active screen plasma nitride 316 austenitic stainless steel,” Corrosion Science, vol. 46, pp. 1527-147, 2004.
[100] L. Wang, B. Xu, Z. Yu and Y. Shi. “The wear and corrosion properties of stainless steel nitride by low-pressure plasma-arc source ion nitriding at low temperatures,” Surface & Coating Technology, vol. 130, pp. 304-308, 2000.
[101] M. Sode, W. Jacob, T. Schwarz-Selinger and H. Kersten, “Measurement and modeling of neutral, radical, and ion densities in H2-N2-Ar plasmas,” Journal of Applied Physics, vol. 117, pp. 083303, 2015.
[102] H. Ohmi, J. Sato, Y. Shirasu, T. Hirano, H. Kakiuchi and K. Yasutake, “Significant Improvement of Copper Dry Etching Property of a HighPressure Hydrogen-Based Plasma by Nitrogen Gas Addition,” ACS Omega, vol. 4, pp. 4360-4366, 2019.
[103] C. E. Pinedo and W. A. Monteiro, “On the kinetics of plasma nitriding a martensitic stainless steel type AISI 420,” Surface & Coating Technology, vol. 179, pp. 119-123, 2004.
[104] E. Menthe and K. -T. Rie, “Further investigation of the structure and properties of austenitic stainless steel after plasma nitriding,” Surface & Coating Technology, vol. 116-119, pp. 199-204, 1999.

無法下載圖示 全文公開日期 2026/08/15 (校內網路)
全文公開日期 2026/08/15 (校外網路)
全文公開日期 2026/08/15 (國家圖書館:臺灣博碩士論文系統)
QR CODE