簡易檢索 / 詳目顯示

研究生: 許馨予
Hsin-Yu Hsu
論文名稱: 平行連桿型遠端運動中心機構之設計與應用
Design and Application of Parallelogram-Type Remote Center-of-Motion Mechanisms
指導教授: 陳羽薰
Yu-Hsun Chen
口試委員: 石伊蓓
Hyi-Pei Shi
吳益彰
Yi-Chang Wu
陳冠辰
Guan-Chen Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 153
中文關鍵詞: 遠端運動中心構造合成機構設計
外文關鍵詞: remote center of motion, configuration synthesis, mechanism design
相關次數: 點閱:144下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 遠端運動中心(Remote Center of Motion, RCM)為遠端一虛擬的固定點,而RCM機構的輸出桿在運動範圍內的任意位置皆繞 RCM旋轉、或滑動軸線通過 RCM。本研究提出六連桿與八連桿RCM機構圖譜,並以系統化的方式簡化現有構型設計較繁雜的問題。透過創意性機構設計法(Creative Mechanism Design Methodology),由特殊化與具體化步驟得到 8 種可行的遠端運動中心機構,再以極心線法(Centrode Method)證明此圖譜生成之構型具遠端運動中心特性。RCM位置與尺寸參數設計可藉由調整桿件長度與多接頭桿角度,形成偏移RCM機構。此外,利用靜平衡機構之能量法則推導遠端運動中心機構的彈簧常數關係式,並可對應多種彈簧安裝位置。應用此圖譜產生的RCM機構,本研究提出三種不同的設計實例,其一為姿態轉換輔具機構,將遠端運動中心分別與髖關節和膝關節重合,避免輔具在躺臥、坐起、站立的姿態轉換過程中對人體造成壓迫。藉由SOLIDWORKS和ADAMS軟體模擬機構的運動和靜力平衡特性,並透過縮小版模型的製作實驗此機構實際運動情形。其二為折疊機構的應用,設計三片式敞篷機構及折疊螢幕手機,大幅簡化了現有折疊機構在構型、尺寸、及力學平衡方面複雜的設計程序。其三則為 3D 掃描器的設計,運用八連桿的複數遠端運動中心特性分別安裝光源與相機至兩輸出桿,模擬不同裝置方式的工作空間,改善現有產品的掃描範圍限制,並以軟體模擬證實掃描器符合靜平衡設計。最後將現有設計進行分析,可發現六桿與八桿之RCM構型均包含在本研究提出的可行構造圖譜之中,不只能用於手術機械臂等等,甚至往更多新型態的領域發展,因而驗證圖譜之完整性與設計之可行性。


    The Remote Center of Motion (RCM) is a remote virtual fixed point, and the output link of an RCM mechanism rotates around this point or slides along an axis through the point in any position within its motion range. This study proposes an atlas of parallelogram-type RCM mechanism with six-bar and eight-bar linkage to simplify the existing design procedures. The atlas is produced through the Creative Mechanism Design (CMD) Methodology with the steps of specialization and particularization, and eight feasible RCM mechanisms are generated. The kinematic characteristics of these RCM mechanisms are proved by Centrode Method. The position of RCM & dimensional parameters of the linkage can generate the shift RCM mechanism by adjusting the length of the linkage and the angle of the multi-joint linkage. In addition, the statically balanced design for these RCM mechanisms is provided based on energy method. The spring coefficient related to the dimensional and mass parameters can be determined with various positions for spring assembly. Three applications of the RCM mechanisms are presented as design examples. The first example is an assistive device to help the patients translate their posture from lying to sitting or from sitting to standing. To avoid stressing the user's body when changing postures, the positions of RCM are set to meet the positions of hip and knee joints, respectively. The performance of the proposed mechanism in both kinematic and statically balanced is verified through the software SOLIDWORKS and ADAMS. A scaled-down prototype is also provided to demonstrate the motion of this mechanism. The second example is folding mechanisms including a three-piece convertible and a folding screen mobile. The existing complicated design procedure of configuration, dimensional parameters, and gravity balancing of the folding mechanisms is obviously simplified with the proposed atlas of RCM mechanism. The third example is an innovative mount of 3D scanner with dual RCMs generated by an eight-bar linkage to arrange the light source and camera separately. Compared to the existing products, the working space of the proposed RCM mechanism is substantially extended. The statically balanced design of scanner is also verified. To summarize, the existing RCM mechanisms with six-bar and eight-bar are all included in the presented atlas. The RCM mechanism can be developed not only for surgical robotic arms but also for more innovative fields, and therefore the integrity and feasibility of the proposed RCM atlas are validated.

    摘要 I Abstract III 致謝 V 目錄 VI 圖目錄 IX 表目錄 XVIII 第一章 緒論 1 1.1 文獻回顧 2 1.1.1 應用於微創手術設備的遠端運動中心機構 2 1.1.2 應用於輔具的遠端運動中心機構 8 1.1.3 構型設計方法 12 1.2 研究目的 16 1.3 論文架構 17 第二章 RCM機構之構型生成 20 2.1 遠端運動中心機構圖譜 20 2.2 特殊化流程 22 2.3 具體化機構構型 26 2.4 多餘桿件判別 28 2.5 現有設計比對 31 第三章 RCM機構之參數設計 33 3.1 定義平行連桿型RCM機構參數 33 3.1.1 原始生成之RCM機構 33 3.1.2 改變多接頭桿角度之RCM機構 37 3.1.3 極心線法驗證RCM位置 46 3.2 平行連桿型RCM機構靜平衡設計 51 3.2.1 靜平衡基本理論與假設 52 3.2.2 單自由度六桿RCM機構之靜平衡設計 54 3.2.3 單自由度八桿RCM機構之靜平衡設計 59 第四章 姿態轉換輔具設計實例一 68 4.1 髖關節輪椅輔助機構設計 68 4.1.1 髖關節輪椅輔助機構靜平衡設計 70 4.1.2 髖關節輪椅輔助機構電腦模擬與驗證 74 4.2 髖關節輪椅輔助機構作動模擬 78 4.3輪椅機構原型機製作 81 4.3.1 模型桿件製作與組裝 81 4.3.2 模擬結果與討論 83 4.4髖關節與膝關節輪椅機構設計 84 4.4.1 髖關節與膝關節輪椅機構靜平衡設計 84 4.4.2 髖關節與膝關節輪椅機構電腦模擬與驗證 88 4.4.3 髖關節與膝關節輪椅機構作動模擬 91 4.5 小結 93 第五章 折疊機構設計實例二 94 5.1 複數RCM應用 94 5.2 敞篷機構設計 95 5.2.1 敞篷機構靜平衡設計 100 5.2.2 敞篷機構電腦模擬與驗證 104 5.3 折疊螢幕手機設計 107 第六章 3D掃描器設計實例三 110 6.1 3D掃描器應用 110 6.2 3D掃描器設計 111 6.2.1 3D掃描器靜平衡設計 116 6.2.2 3D掃描器電腦模擬與驗證 119 第七章 結論與未來展望 123 7.1 結論 123 7.2 未來展望 124 參考文獻 126

    [1]Hadavand, M., Mirbagheri, A., Behzadipour, S., and Farahmand, F., 2014, "A Novel Remote Center of Motion Mechanism for The Force-Reflective Master Robot of Haptic Tele-surgery Systems," International Journal of Medical Robotics and Computer Assisted Surgery, Vol. 10, pp. 129-139.
    [2]Suzuki, H., Wood, R. J., 2020, "Origami-Inspired Miniature Manipulator for Teleoperated Microsurgery," Nature Machine Intelligence, Vol. 2, pp. 437-446.
    [3]Bartenbach, V., 2017, "Constraints Caused by Lower Extremity Exoskeletons,"Ph. D. Thesis, Karlsruhe Institute of Technology, Germany.
    [4]Christensen, S., Bai, S., 2017, "A Novel Shoulder Mechanism with A Double Parallelogram Linkage for Upper-Body Exoskeletons," Wearable Robotics: Challenges and Trends : Proceedings of the 2nd International Symposium on Wearable Robotics, Vol. 16, pp. 51-56.
    [5]Nisar, S., Hasan, O., 2019, "Telesurgical Robotics and A Kinematic Perspective," Advanced Methodologies and Technologies in Artificial Intelligence, Computer Simulation, and Human-Computer Interaction, pp. 1112-1126.
    [6]顏鴻森,2013,機械裝置的創意性設計,東華書局。
    [7]Lin, P. Y., Shieh, W. B., and Chen, D. Z., 2008, "Design of Perfectly Static-Balanced One-DOF Planar Linkage With Revolute Joint Only," Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Brooklyn, New York, USA, 3-6 August, Vol. 2, pp. 617-625.
    [8]Kuo, C.-H., Dai, J. S., 2009, "Robotics for Minimally Invasive Surgery: A Historical Review from the Perspective of Kinematics," International Symposium on History of Machines and Mechanisms, pp. 337-354.
    [9]Kuo, C. H., Dai, J. S., and Dasgupta, P., 2012, "Kinematic Design Considerations for Minimally Invasive Surgical Robots: An Overview," International Journal of Medical Robotics and Computer Assisted Surgery, Vol. 8, pp. 127-145.
    [10]Taylor, R. H., Funda, J., Grossman, D. D., Karidis, J. P., and Larose, D. A., 1994, Improved Remote Center-of-motion Robot for Surgery, European Patent, No. EP0595291.
    [11]Stoianovici, D., Whitcomb, L. L., Anderson, J. H., Taylor, R. H., and Kavoussi, L. R., 1998, "A Modular Surgical Robotic System for Image Guided Percutaneous Procedures," International Conference on Medical Image Computing and Computer-Assisted Intervention, Cambridge, Massachusetts, USA, 11-13 October, pp. 404-410.
    [12]Berkelman, P., Cinquin, P., Troccaz, J., Ayoubi, J., Letoublon, C., and Bouchard, F., 2002, "A Compact, Compliant Laparoscopic Endoscope Manipulator," Proceedings of IEEE International Conference on Robotics and Automation, Washington, DC, 11-15 May, pp. 1870-1875.
    [13]Lum, M. J., Rosen, J., Sinanan, M. N., and Hannaford, B., 2006, "Optimization of A Spherical Mechanism for A Minimally Invasive Surgical Robot: Theoretical and Experimental Approaches," IEEE Transactions on Biomedical Engineering, Vol. 53, pp. 1440-1445.
    [14]Lehman, A. C., Tiwari, M. M., Shah, B. C., Farritor, S. M., Nelson, C. A., and Oleynikov, D., 2010, "Recent Advances in the CoBRASurge Robotic Manipulator and Dexterous Miniature in Vivo Robotics for Minimally Invasive Surgery," Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Vol. 244, pp. 1487-1494.
    [15]Song, S. E., Tokuda, J., Tuncali, K., Yamada, A., Torabi, M., and Hata, N., 2013, "Design Evaluation of a Double Ring RCM Mechanism for Robotic Needle Guidance in MRI-guided Liver Interventions," IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan, 3-7 November, pp. 4078-4083.
    [16]Choi, H., Kim, H. J., Lim, Y.-A., Kwak, H.-S., Jang, J.-W., and Won, J., 2013, "Conically Shaped Remote Center-of-Motion Mechanism for Single-Incision Surgery," IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo, Japan, 3-7 November, pp. 3604-3609.
    [17]Sanchez, D., Black, M., and Hammond, S., 2015, Pivot Point Arm for A Robotic System Used to Perform A Surgical Procedure, United States Patent, No. US9011415B2.
    [18]Zhu, Y. P., Zhang, F., 2015, "A Novel Remote Center-of Motion Parallel Manipulator for Minimally Invasive Celiac Surgery," International Journal of Research in Engineering and Science, Vol. 3, pp. 15-19.
    [19]Zhang, N., Huang, P., and Li, Q., 2018, "Modeling, Design and Experiment of A Remote-center-of-motion Parallel Manipulator for Needle Insertion," Robotics and Computer-Integrated Manufacturing, Vol. 50, pp. 193-202.
    [20]Bobade, R. S., Yadav, S. K., 2018, "Compliant Remote Center Motion Mechanism for Minimally Invasive Surgical Robots," International Conference for Convergence in Technology, Pune, India, Apr. 6-8, pp. 1-5.
    [21]Olivier, L., Alejandro, J. R., Yeongmi, K., and Roger, G., 2011, "Design of a Robotic Device for Assessment and Rehabilitation of Hand Sensory Function," IEEE International Conference on Rehabilitation Robotics, Zurich, Switzerland, Jun. 29-Jul. 1, pp. 1-6.
    [22]Fontana, M., Fabio, S., Marcheschi, S., and Bergamasco, M., 2013, "Haptic Hand Exoskeleton for Precision Grasp Simulation," Journal of Mechanisms and Robotics, Vol. 5, pp. 041014(1-9).
    [23]Volker, B., Dario, W., Dominique, S., and Robert, R., 2015, "A Lower Limb Exoskeleton Research Platform to Investigate Human-Robot nteraction," IEEE International Conference on Rehabilitation Robotics, Singapore, Aug. 11–14, pp. 600-605.
    [24]Lee, Y. et al., 2017, "Biomechanical Design of a Novel Flexible Exoskeleton for Lower Extremities," IEEE/ASME Transactions on Mechatronics, Vol. 22, pp. 2058-2069.
    [25]Hsieh, H.-C., Chen, D.-F., Chien, L., and Lan, C.-C., 2017, "Design of a Parallel Actuated Exoskeleton for Adaptive and Safe Robotic Shoulder Rehabilitation," IEEE/ASME Transactions on Mechatronics, Vol. 22, pp. 2034-2045.
    [26]Castro, M. N., Rasmussen, J., Andersen, M. S., and Bai, S., 2019, "A compact 3-DOF shoulder mechanism constructed with scissors linkages for exoskeleton applications," Mechanism and Machine Theory, Vol. 132, pp. 264-278.
    [27]Zong, G., Pei, X., Yu, J., and Bi, S., 2008, "Classification and Type Synthesis of 1-DOF Remote Center of Motion Mechanisms," Mechanism and Machine Theory, Vol. 43, pp. 1585-1595.
    [28]He, Y., Zhang, P., Jin, H., Hu, Y., and Zhang, J., 2016, "Type Synthesis for Remote Center of Motion Mechanisms Based on Coupled Motion of Two Degrees-of-Freedom," Journal of Mechanical Design, Vol. 138, pp. 122301(1-11).
    [29]Ye, W., Zhang, B., and Li, Q., 2020, "Design of a 1R1T Planar Mechanism with Remote Center of Motion," Mechanism and Machine Theory, Vol. 149, pp. 103845(1-13).
    [30]Yan, H. S., Chiu, Y. T., 2013, "An Algorithm for the Construction of Generalized Kinematic Chains," Mechanism and Machine Theory, Vol. 62, pp. 75-98.
    [31]Yang, J., Yu, L., Wang, L., Wang, Z., and Wang, W., 2017, "Dynamic Modeling and Analysis of the Instrument Arm Based on the Physical Properties of Soft Tissues," Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, Vol. 232, pp. 2185-2199.
    [32]Navid, S., Wouter, H., Tim van, K., Edsko, H., Matthijs, O., and Sarthak, M., 2017, "CT-Compatible Remote Center of Motion Needle Steering Robot: Fusing CT Images and Electromagnetic Sensor Data.," Medical Engineering and Physics, Vol. 45, pp. 71-77.
    [33]Marghitu, D. B., Dupac, M., 2012, Advanced Dynamics, Springer.
    [34]Arakelian, V., Ghazaryan, S., 2008, "Improvement of Balancing Accuracy of Robotic Systems: Application to Leg Orthosis for Rehabilitation Devices," Mechanism and Machine Theory, Vol. 43, pp. 565-575.
    [35]Baradat, C., Arakelian, V., Briot, S., and Guegan, S., 2008, "Design and Prototyping of a New Balancing Mechanism for Spatial Parallel Manipulators," Journal of Mechanical Design, Vol. 130, pp. 072305(1-13).
    [36]Arakelian, V., 2016, "Gravity Compensation in Robotics," Advanced Robotics, Vol. 30, pp. 79-96.
    [37]Haerder, J. L., 2001, Energy-Free Systems: Theory, Conception and Design of Statically Balanced Spring Mechanisms, Department of Mechanical Engineering, Delft University of Technology, Delft, The Netherlands.
    [38]Rahman, T., Rahmanathan, R., Seliktar, R., and Harwin, W., 1995, "Simple Technique to Passively Gravity-Balanced Articulated Mechanisms," ASME Journal of Mechanism Design, Vol. 117, pp. 655-658.
    [39]"TECHTOYS EMPEROR LX", Available at: http://www.techtoyshopping.com/emperor-lx-config.html.
    [40]"ALTWORK FLEX", Available at: https://altwork.com/pages/altwork-stations.
    [41]人體計測資料庫,2016,我國人體肢段特性資料,勞動部勞動及職業安全衛生研究所。
    [42]Bai, G., Qi, P., Althoefer, K., Li, D., Kong, X., and Dai, J. S., 2015, "Kinematic Analysis of a Mechanism With Dual Remote Centre of Motion and its Potential Application," Proceedings of the ASME 2015 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference, Boston, Massachusetts, USA, 2-5 Aug, pp. 47118(1-6).
    [43]Bai, G., Li, D., Wei, S., and Liao, Q., 2014, "Kinematics and Synthesis of a Type of Mechanisms with Multiple Remote Centers of Motion," Journal of Mechanical Engineering Science, Vol. 228, pp. 3430-3440.
    [44]賴偉立,2006,硬頂汽車敞篷機構之構造與運動分析,碩士論文,國立臺灣科技大學機械工程系,臺北,臺灣。
    [45]許智博,2009,六連桿三截式硬頂敞篷機構之創意設計與最佳尺度合成,碩士論文,國立臺灣科技大學機械工程系,臺北,臺灣。
    [46]方廷鈺,2011,敞篷車頂收放機構之創新設計,碩士論文,國立高雄應用科技大學模具工程系,高雄,臺灣。
    [47]翁慶毓,2011,八連桿型硬頂敞篷之機構設計,碩士論文,國立屏東科技大學車輛工程系,屏東,臺灣。
    [48]吳承學,張志成,朱瑞霖,2012,樞紐器及其可攜裝置,中華民國專利,M433707。
    [49]徐安賜,2014,齒輪式雙軸同步樞紐結構,中華民國專利,M480240。
    [50]徐安賜,林雅菁,2014,電子設備薄型化雙軸聯動樞軸器,中華民國專利,M480237。
    [51]林君翰,曾勇智,2021,多軸式樞軸裝置,中華民國專利,M617860。
    [52]徐安賜,戴偉翰,林子皓,2021,雙軸同步式鉸鏈,中華民國專利,M617379。
    [53]徐安賜,成艷姣,2021,折疊式螢幕裝置,中華民國專利,M620588。
    [54]Isa, M. A., Lazoglu, I., 2017, "Design and Analysis of a 3D Laser Scanner," Journal of Measurement, Vol. 111, pp. 122-133.
    [55]"通業技研Artec手持式3D掃描器", Available at: https://www.git.com.tw/case_detail.php?id=81.
    [56]"SKYMAKER 3DPandoras Scan Pro", Available at: http://www.sky-tech.com.tw/sky-tech/tw/3dp_era_tw.php.

    無法下載圖示 全文公開日期 2024/08/18 (校內網路)
    全文公開日期 2024/08/18 (校外網路)
    全文公開日期 2024/08/18 (國家圖書館:臺灣博碩士論文系統)
    QR CODE