簡易檢索 / 詳目顯示

研究生: 陳佑昇
You-Sheng Chen
論文名稱: 多相磁鐵輔助型同步磁阻電動機之設計
Design of Multi-phase Permanent-magnet Assisted Synchronous Reluctance Motors
指導教授: 黃仲欽
Jonq-Chin Hwang
口試委員: 葉勝年
Sheng-Nian Yeh
林長華
Chang-Hua Lin
劉傳聖
Chuan-Sheng Liu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2017
畢業學年度: 106
語文別: 中文
論文頁數: 95
中文關鍵詞: 六相電動機三相換流器磁鐵輔助型同步磁阻電動機同步磁阻電動機永磁式同步電動機
外文關鍵詞: six-phase motor, three-phase inverter, permanent-magnet assistedsynchronous reluctance motor, synchronous reluctance motor, permanent-magnet synchronous motor
相關次數: 點閱:1154下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文旨在設計多相磁鐵輔助型同步磁阻電動機,電動機定子為48槽,轉子為8極。定子繞組為雙三相及六相,可配合兩組三相三臂型換流器電路作控制,提高系統的穩定度。轉子則針對磁極形狀作設計,以提高交軸電感Lq與直軸電感Ld差值,如此,不僅具有永久磁鐵的激磁轉矩,亦有磁阻轉矩。
    在電動機結構上,本文將電動機轉子的磁極挖空形成磁障,於磁障中加入非稀土永久磁鐵,用以提高Lq與Ld之差值及降低感應電動勢的低次諧波含量,並以之為性能指標。文中採用電磁分析軟體JMAG作磁路分析,由性能指標作實體製作的依據。本文已完成多相磁鐵輔助型同步電動機的實體製作。在發電機模式以額定轉速2000 rpm運轉,當定子繞組為雙三相接線時,感應電動勢峰值為24.25 V,總諧波失真率為6.41 %,交軸電感Lq為12.41 mH,直軸電感Ld為5.44 mH,二者差值為 6.97 mH。此外,當定子繞組為六相接線時,感應電動勢峰值為25.21 V,總諧波失真率為12.04 %,Lq為10.92 mH, Ld為5.52 mH,兩者相差5.40 mH。此外,在額定轉速之發電機模式加入負載電阻Y接每相5 量得雙三相接線的輸出功率為214.33 W,六相接線的輸出功率為231.67 W,效率分別為72.75%及74.25%。分析與實測結果相接近,印證了本文電動機設計的可行性。


    This thesis aims to analyze and design a multiphase permanent-magnet assisted synchronous reluctance motor. The motor has 48 slots and 8 poles. Dual three-phase winding with two sets of three-phase three-arm inverter as well as six-phase winding with six-phase inverter are designed to enhance system reliability. The innovative design of rotor magnet shape is proposed to increase the inductance ratio between quadrature as well as direct axis to yield both magnetic and reluctance torques.
    The magnets in rotor are hollowed to form magnetic barriers. Non-rare earth permanent-magnets are then added in magnetic barriers to boost the above mentioned inductance ratio and reduce the low-frequency harmonic components of back electro-motive-force. The JMAG Designer software is used for magnetic circuit analysis. A practical multiphase permanent-magnet assisted synchronous reluctance motor is built. At the rated speed of 2000 rpm, experimental results show that for dual three-phase winding, the fundamental peak value of no-load voltage is 24.25 V with total harmonic distortion (THD) of 6.41%. The q– and d–axis inductances are 12.41 mH and 5.44 mH, respectively, yielding the inductance difference of 6.97 mH. Whereas, for six-phase winding, the fundamental peak no-load voltage is 25.21 V with THD of 12.04%. The associated q- and d-axis inductances are 10.92 mH and 5.52 mH, respectively, resulting in the inductance difference of 5.40 mH. Additionally, at the rated speed, the generated output power with the resistive load of 5 , for the dual three-phase winding is 214.33W, yielding an efficiency of 72.75%. While the six-phase winding under the same load generates 231.67W with efficiency of 74.25%. The feasibility of the proposed design is verified by the close agreement between analytic and experimental results.

    摘要 I Abstract II 誌謝 III 目錄 IV 符號索引 VI 圖表索引 XII 第一章 緒論 1 1.1 研究動機及目的 1 1.2 文獻探討 2 1.3 本文的特色 3 1.4 本文大綱 4 第二章 多相磁鐵輔助型同步磁阻電動機的數學模式 5 2.1 前言 5 2.2 雙三相磁鐵輔助型同步磁阻電動機的數學模式 5 2.2.1 雙三相繞組a1 b1 c1與a2 b2 c2之電壓及磁通方程式 5 2.2.2 轉子座標系統轉換之電壓及電磁轉矩方程式 8 2.3 六相磁鐵輔助型同步磁阻電動機的數學模式 12 2.3.1 六相繞組a b c與x y z之電壓及磁通方程式 12 2.3.2 轉子座標系統轉換之電壓及電磁轉矩方程式 15 2.4 結語 18 第三章 多相磁鐵輔助型同步磁阻電動機的設計 19 3.1 前言 19 3.2 多相磁鐵輔助型同步磁阻電動機的結構設計 19 3.2.1 定子及轉子的結構選定 19 3.2.2 定子結構說明及接線設計 20 3.2.3 轉子結構設計 25 3.3 多相磁鐵輔助型同步磁阻電動機的分析 31 3.3.1 靜磁分析 32 3.3.2 電機的感應電動勢分析 34 3.3.3 電動機的參數分析 37 3.4 結語 45 第四章 多相磁鐵輔助型同步磁阻電動機的製作與參數量測 46 4.1 前言 46 4.2 多相磁鐵輔助型同步磁阻電動機的製作 46 4.3 轉子角位置回授裝置 48 4.3.1 轉子角位置回授裝置的結構設計 48 4.3.2 轉子角位置回授裝置之靜磁分析 50 4.3.3 轉子角位置回授裝置之校正 51 4.4 參數量測 53 4.5 結語 64 第五章 結論與建議 66 5.1 結論 66 5.2 建議 67 參考文獻 68 附錄 A 磁鐵材質資料 73 附錄 B 矽鋼片材質資料 75 附錄 C 漆包線規格 76

    [1] W. Cao, B. C. Mecrow, G. J. Atkinson, J. W. Bennett, and D. J. Aekinson, “Overview of Electric Motor Technologies used for More Electric Aircaft, ” IEEE Transaction on Industry Electrononics, Vol. 59, No. 9, PP .3523-3531, 2012.
    [2] L. Xiaomin, K. L. V. Iyer, K. Mukherjee, and N.C. Kar, "A Wavelet/PSO Based Voltage Regulation Scheme and Suitability Analysis of Copper- and Aluminum-Rotor Induction Machines for Distributed Wind Power Generation," IEEE Transactions on Smart Grid, Vol. 3, No. 4, pp.1923-1934, 2012.
    [3] M. Hodowanec, W. R. Finley, "Copper versus aluminum-which construction is best [induction motor rotors]," in Industry Applications Magazine, IEEE, Vol. 8, No. 4, pp.14-25, 2002.
    [4] W. R. Finley, M. Hodowanec, "Selection of Copper Versus Aluminum Rotors for Induction Motors," IEEE Transactions on Industry Applications, Vol. 37, No. 6, pp.1563-1573, 2001.
    [5] 徐國峯,三相感應電動機效率改善之研究,國立台灣科技大學電機研究所,民國一百零六年
    [6] K. T. Chau, C. C. Chan and C. Liu, “Overview of Permanent-Magnet Brushless Drives for Electric and Hybrid Electric Vehicles,” IEEE Transaction on Industrial Electronics, Vol. 55, No.6, PP. 2246-2259, 2008.
    [7] M. Barcaro, A. Faggion, M. Bianchi and S. Bolognaru, “Sensorless Rotor Position Detection Capability of a Dual Three-phase Fractional-Slot IPM Machine,” IEEE Transaction on Industry Applications, Vol.48, No.6, PP. 2068-2079, 2012.
    [8] T. Ishikawa, Y. Seki, N. Kurita, "Analysis for Fault Detection of Vector-Controlled Permanent Magnet Synchronous Motor With Permanent Magnet Defect," IEEE Transactions on Magnetics, Vol. 49, No. 5, pp.2331-2334, 2013.
    [9] I. Dobrota, M. Costin, I. Voncila, G. Fetecau, "Permanent magnet Synchronous Motor Optimization Design for Electric Drives," in Electrical and Electronics Engineering (ISEEE), 2013 4th International Symposium on, pp.1-4, 11-13, 2013.
    [10] C.-Y. Hsiao, S.-N. Yeh, J.-C. Hwang, “Design of High Performance Permanent-magnet Synchronous Wind Generators,” Energies, vol. 7, pp. 7105-7124, 2014.
    [11] C.-Y. Hsiao, S.-N. Yeh, J.-C. Hwang, “A Novel Cogging Torque Simulation Method For Permanent-magnet Synchronous Machines,” Energies, vol. 4, pp. 2166-2179, 2011.
    [12] T.-Y. Chou, T.-H. Liu, and T.-T. Cheng, "Sensorless Micro-permanent Magnet Synchronous Motor Control System with a Wide Adjustable Speed Range," in Electric Power Applications, IET, Vol. 6, No. 2, pp.62-72, 2012.
    [13] T.-C. Jeong, W. H. Kim, M.-J. Kim, K.-D. Lee, J.-J. Lee, J.-H. Han, T.-H. Sung, H.-J. Kim, and J. Lee, "Current Harmonics Loss Analysis of 150-kW Traction Interior Permanent Magnet Synchronous Motor Through Co-Analysis of d-q Axis Current Control and Finite Element Method," IEEE Transactions on Magnetics, Vol. 49, No. 5, pp.2343-2346, 2013.
    [14] A. V. Sant, K. R. Rajagopal, N. K. Sheth, "Permanent Magnet Synchronous Motor Drive Using Hybrid PI Speed Controller With Inherent and Noninherent Switching Functions," IEEE Transactions on Magnetics, Vol. 47, No. 10, pp.4088-4091, 2011.
    [15] K.-C. Kim, "A Novel Calculation Method on the Current Information of Vector Inverter for Interior Permanent Magnet Synchronous Motor for Electric Vehicle," IEEE Transactions on Magnetics, Vol. 50, No. 2, pp.829-832, 2014.
    [16] M. Hejra, A. Mansouri, and H. Trabeisi, "Optimal Design of a Permanent in magnet Synchronous Motor: Application of In-wheel Motor," in Renewable Energy Congress (IREC), 2014 5th International, pp.1-5, 25-27, 2014.
    [17] F. Chai, P. Liang, P. Yulong, C. Shukang, "Analytical Method for Iron Losses Reduction in Interior Permanent Magnet Synchronous Motor," IEEE Transactions on Magnetics, Vol. 51, No. 11, pp.1-4, 2015.
    [18] Y. Li, J. Xing, T. Wang and Y. Lu, "Programmable Design of Magnet Shape for Permanent-Magnet Synchronous Motors with Sinusoidal Back EMF Waveforms", IEEE Transactions on Magnetics, vol. 44, pp. 2163 - 2167, 2008.
    [19] M. Barcaro, N. Bianchi, and F. Magnussen, “Permanent-Magnet Optimization in Permanent-Magnet-Assisted Synchronous Reluctance Motor for a wide Constant-Power Speed Range,” IEEE Transactions on Industrial Electronics, Vol. 59, No. 6, PP. 2495-2502, 2012.
    [20] M. Obata, S. Morimoto, M. Sanada and Y. Inoue, “Performance of PMAsynRM with Ferrite Magnets for EV/HEV Applications Considering Productivity, ” IEEE Transaction on industry Applications, Vol. 50, No. 4, PP. 2427-2435, 2014.
    [21] M. Ferrari, N. Bianchi, and E. Fornasiero, "Analysis of Rotor Saturation in Synchronous Reluctance and PM-Assisted Reluctance Motors," IEEE Transactions on Industry Applications, Vol. 51, No. 1, pp.169-177, 2015.
    [22] M. Barcaro, T. Pradella and I. Furlan, "Low-torque Ripple Design of A Ferrite-assisted Synchronous Reluctance Motor,"IET Electric Power Applications, Vol. 10, No. 5, pp. 319-329, 5 2016.
    [23] K. Kondo, S. Kusase, T. Maekawa, and K. Hanada, "A New PM-Assisted Synchronous Reluctance Motor With Three-Dimensional Trench Air Gap," IEEE Transactions on Industry Applications, Vol. 50, No. 4, pp.2485-2492, July-Aug. 2014.
    [24] P. Guglielmi, B. Boazzo, E. Armando, G. Pellegrino, and A. Vagati, "Permanent-Magnet Minimization in PM-Assisted Synchronous Reluctance Motors for Wide Speed Range," IEEE Transactions on Industry Applications, Vol. 49, No. 1, pp.31-41, 2013.
    [25] S. Morimoto, O. Shohei, Y. Inoue, and M. Sanada, "Experimental Evaluation of a Rare-Earth-Free PMASynRM With Ferrite Magnets for Automotive Applications," in Industrial Electronics, IEEE Transactions on, Vol. 61, No. 10, pp.5749-5756, 2014.
    [26] R. L. J. Sprangers, J. J. H. Paulides, B. L. J. Gysen, J. Waarma, and E.A. Lomonova, "Semianalytical Framework for Synchronous Reluctance Motor Analysis Including Finite Soft-Magnetic Material Permeability," IEEE Transactions on Magnetics , Vol. 51, No. 11, pp.1-4, 2015.
    [27] D. Ursu, V. Gradinaru, B. fahimi and I. Boldea, “Six-phase BLDC Reluctance Machine: FEM-Based Characterization and Four-Quadrant Control, ” IEEE Transaction in Industry Application, Vol. 51, No. 3, PP. 2015-2115, 2015.
    [28] E. Levi, M. Jones, S.N. Vukosavic "A Series-connected Two-motor Six-phase Drive with Induction and Permanent Magnet Machines," IEEE Transactions on Energy Conversion, Vol. 21, No. 1, pp.121-129, 2006.
    [29] A. Hosseyni, R. Trabelsi, M.F. Mimouni, and A. Iqbal, "Vector Controlled Five-phase Permanent Magnet Synchronous Motor Drive," 2014 IEEE 23rd International Symposium on Industrial Electronics (ISIE), pp.2122-2127, 2014.
    [30] C. Zhou, G. Yang, and J. Su, "PWM Strategy With Minimum Harmonic Distortion for Dual Three-Phase Permanent-Magnet Synchronous Motor Drives Operating in the Overmodulation Region," IEEE Transactions on Power Electronics, Vol. 31, No. 2, pp.1367-1380, 2016.
    [31] B. Stumberger, G. Stumberger, A. Hamler, M. Trlep, M. Jesenik, and V. Gorican, "Increasing of Output Power Capability in a Six-phase Flux-weakened Permanent Magnet Synchronous Motor with a Third Harmonic Current Injection," IEEE Transactions on Magnetics, Vol. 39, No. 5, pp.3343-3345, 2003.
    [32] F. Scuiller, E. Semail, J.-F. Charpentier, and P. Letellier, "Multi-criteria-based Design Approach of Multi-phase Permanent Magnet Low-speed Synchronous Machines," IET Electric Power Applications, Vol. 3, No. 2, pp.102-110, 2009.
    [33] F. M. L. De Belie, J.A. Melkebeek, "Application of a Voltage Adaptive Sensorless Current Controller to a Multi-phase Permanent-magnet Synchronous Machine," 2009. ELECTROMOTION 2009. 8th International Symposium on Advanced Electromechanical Motion Systems & Electric Drives Joint Symposium, pp.1-6, 1-3, 2009.
    [34] S. Sadeghi, L. Guo, H.A. Toliyat, and L. Parsa, "Wide Operational Speed Range of Five-Phase Permanent Magnet Machines by Using Different Stator Winding Configurations," IEEE Transactions on Industrial Electronics, Vol. 59, No. 6, pp.2621-2631, 2012.
    [35] 勢流科技股份有限公司,JMAG-Designer (http://www.flotrend.com.tw/products/em/jmag/2_intro.php)
    [36] F. Cupertino, G. Pellegrino, and C. Gerada, "Design of Synchronous Reluctance Motors With Multiobjective Optimization Algorithms," IEEE Transactions on Industry Applications, Vol. 50, No. 6, pp.3617-3627, 2014.
    [37] C.-T. Liu, T.-Y. Luo, C.-C. Hwang, and B.-Y. Chang, "Field Path Design Assessments of a High-Performance Small-Power Synchronous-Reluctance Motor," IEEE Transactions on Magnetics, Vol. 51, No. 11, pp.1-4, 2015.
    [38] N. G. Özçelik, U. E. Doğru, H. Gedik, M. İmeryüz and L. T. Ergene, "A Multi-Parameter Analysis for Rotor Design of Synchronous Reluctance Motors," 2016 XXII International Conference on Electrical Machines (ICEM), Lausanne , pp. 664-670, 2016
    [39] M. Ferrari, N. Bianchi, A. Doria, and E. Fornasiero, "Design of Synchronous Reluctance Motor for Hybrid Electric Vehicles," IEEE Transactions on Industry Applications, Vol. 51, No. 4, pp.3030-3040, 2015.
    [40] C. M. Spargo, B. C. Mecrow, J. D. Widmer, C. Morton, and N. J. Baker, "Design and Validation of a Synchronous Reluctance Motor With Single Tooth Windings," IEEE Transactions on Energy Conversion, Vol. 30, No. 2, pp.795-805, 2015.
    [41] 蕭鈞毓,六相及雙三相繞組永磁式同步電機之分析及設計,國立台灣科技大學電機研究所,民國九十六年
    [42] 許尚文,六相永磁式同步電動機設計及控制,國立台灣科技大學電機研究所,民國九十五年
    [43] TDK株式會社(http://www.global.tdk.com/)
    [44] 中國鋼鐵股份有限公司(http://www.csc.com.tw/)
    [45] 太平洋電線電纜股份有限公司(http://www.pewc.com.tw/)

    無法下載圖示 全文公開日期 2022/12/11 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE