簡易檢索 / 詳目顯示

研究生: 連于瑄
Yu-Shuan Lien
論文名稱: 具CAN Bus通訊之鋰離子電池容量估測系統
Lithium-Ion Battery SOC Estimation System with CAN Bus Communication
指導教授: 劉益華
Yi-Hua Liu
口試委員: 王順忠
Shun-Chung Wang
邱煌仁
Huang-Jen Chiu
鄧人豪
Jen-Hao Teng
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 92
中文關鍵詞: 電池容量估測系統剩餘容量CAN Bus電池管理系統
外文關鍵詞: SOC Estimation System, SOC, CAN Bus, BMS
相關次數: 點閱:333下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本文開發一適用於串聯鋰離子電池組之模組化電池容量估測系統,其功能包含監控各單電池電壓、電池組溫度及電池組電流、電池容量百分比與剩餘容量估測以及電池過充/過放保護。本文容量估測方法使用庫倫積分法搭配開路電壓法,在充電/放電模式中使用庫倫積分法累積充放電電量;在休息模式中使用開路電壓法對應開路電壓與容量百分比之關係以估測電池容量,如在休息模式中電池組電流不為零,則利用電池組電流與內阻之乘積修正開路電壓以增加估測精確度。本系統主/僕模組之核心控制器分別使用Microchip公司推出之dsPIC數位信號控制器dsPIC33FJ64GP802及dsPIC33FJ16GS502,為了達到即時顯示及電池資料更新功能,本文亦利用National Instruments公司開發之LabVIEW圖形化系統設計軟體撰寫人性化之人機介面。本文將針對所提出之電池容量估測系統的軟硬體進行詳細說明。
根據實驗結果,本文量測電池之電池電壓精確度可達99.94 %,電流除小電流外精確度可達99.78 %;電池容量百分比估測之絕對誤差小於3 %以內,以剩餘容量估測之使用時間與實際使用時間之誤差小於2分鐘。


In this thesis, a modularized SOC estimation system for series-connected lithium-ion battery pack is proposed. The presented SOC Estimation system provides some features, including cell voltages, pack temperature and pack current monitoring, calculation of battery state of charge (SOC) and remaining capacity and Battery overcharge/over discharge protection. In this thesis, an integrated SOC estimation method which combines coulomb counting method and open circuit voltage (OCV) method is presented. During charging/discharging modes, coulomb counting method is exploited to obtain the charged/discharged capacity by integrating the in-and-out-flowing current over time. On the other hand, OCV method is utilized in the relaxation mode to estimate the SOC according to the OCV and SOC relationship. If the current during relaxation mode is non-zero, an additional I*R drop correction will also be employed to achieve better accuracy. In the proposed system, a master/slave configuration is utilized. The proposed BMS has an on-board CAN bus interface which allows it to communicate with other CAN BMS modules.
In this thesis, the central controller utilized in the master/slave BMS is digital signal controllers (DSCs) dsPIC33FJ64GP802 and dsPIC33F16GS502 from Microchip Corp, respectively. In order to provide the real-time display and data logging of all the battery parameters, a user-friendly graphical user interface (GUI) is also developed using LabView from the National Instrument Corp. Detailed description of the hardware and software of the proposed SOC estimation system will be provided, and experiments will also be carried out to verify the correctness of the proposed SOC estimation system. According to the experimental results, the accuracy of the voltage/current measurement is higher than 99.94 % and 99.77 %, respectively. The maximum error of SOC estimation is lower than 3 % and the maximum error of estimated run-time is fewer than 2 minutes.

摘要 Abstract 誌謝 目錄 圖目錄 表目錄 第一章 緒論 1.1 研究動機與目的 1.2 文獻探討 1.3 本文提出之鋰離子電池容量估測系統 1.4 論文大綱 第二章 二次電池及電池容量估測方法簡介 2.1 二次電池及相關名詞介紹 2.2 二次電池容量估測方法 2.3 本文選用之鋰離子電池規格 第三章 電池容量估測系統之硬體架構 3.1 取樣電路設計規格 3.1.1 電流取樣電路 3.1.2 電壓取樣電路 3.1.3 溫度取樣電路 3.2 通訊介面電路 3.2.1 RS-232通訊介面 3.2.2 CAN bus通訊介面 3.3 輔助電源 第四章 電池容量估測系統之韌體架構 4.1 核心控制器介紹 4.1.1 dsPIC33FJ64GP802 4.1.2 dsPIC33FJ16GS502 4.2 系統程式流程 4.2.1 取樣系統程式 4.2.2 CAN Bus通訊子板系統程式 4.2.3 CAN Bus通訊母板系統程式 4.3 通訊介面 4.3.1 通用非同步收發傳輸器(UART) 4.3.2 控制器區域網路(CAN Bus) 4.4 容量估測方法 4.4.1 開路電壓及電池內阻與容量百分比之關係 4.4.2 容量估測方法 4.5 監控介面 第五章 實驗結果與討論 5.1 實驗環境 5.2 電池容量估測系統實體 5.3 通訊介面測試 5.3.1 UART通訊介面驗證 5.3.2 CAN Bus通訊介面驗證 5.4 鋰離子電池參數估測精確度驗證 5.5 鋰離子電池容量估測精確度驗證 5.6 鋰離子電池剩餘容量估測精確度驗證 5.7 人機介面驗證 5.8 保護機制驗證 第六章 結論與未來展望 6.1 結論 6.2 未來研究方向 參考文獻

[1] 洪裕桓,「智慧型鋰電池管理系統之研製」,國立中山大學電機工程學系碩士論文,2005年6月。
[2] 柯俊偉,「智慧型電池模組之可程控充電機設計」,國立台灣科技大學電機工程學系碩士論文,2012年7月。
[3] J. Voelcker, “Lithium Batteries Take To The Road,” IEEE Spectrum, vol. 44,No. 9, pp. 26-31. (2007)
[4] N. Kularatna, “Dynamics and Modeling of Rechargeable Batteries,” IEEE Power Electronics Magazine, vol. 1, no. 4, pp. 23-33. (2014)
[5] G. I. Hunt, “The great battery search [electric vehicles],” IEEE Spectrum, vol. 35,No. 11, pp. 21-28. (2002)
[6] R. E. Habiballah, O. Unnati, B. Federico, and M. Y. Chow, “Battery Management System : An Overview of its Application in the Smart Grid and Electric Vehicles,” IEEE industrial Electronics Magazine, vol. 7,No. 2, pp. 4-16. (2013)
[7] R. J. Wai, S. J. Jhung, J. J. Liaw, and Y. R. Chang, “Intelligent Optimal Energy Management System for Hybrid Power Sources Including Fuel Cell and Battery,” IEEE Trans. on Power Electronics, vol. 28, no. 7, pp. 3231-3244. (2013)
[8] S. Yarlagadda, T. T. Hartley, and I. Husain, “A Battery Management System Using and Active Charge Equalization Technique Based on a DC/DC Converter Topology,” IEEE Trans. on Industrial Applications, vol. 49, no. 6, pp. 2720-2729. (2013)
[9] Y. J. Xing, W. He, M. Percht, and K. L. Tsui, “State-of-Charge Estimation of Lithium-Ion Batteries Using The Open-Circuit Voltage at Various Ambient Temperatures,” Journal of Applied Energy, vol. 113, pp. 106-115. (2014)
[10] J. Xu, C. C. Mi, B. J. Cao, and J. Y. Cao, “A New Method to Estimate the State of Charge of Lithium-Ion Batteries Based On the Battery Impedance Model,” Journal of Power Sources, vol. 233, pp. 277-284. (2013)
[11] T. Huria, G. Ludovici, and G. Lutzemberger, “State of Charge Estimation of High Power Lithium Iron Phosphate Cells,” Journal of Power Sources, vol. 249, pp. 92-102. (2014)
[12] M. Yu, Y. Barsukov, and M. Vega, “Theory and Implementation of Impedance Track™ Battery Fuel-Gauging Algorithm in bq2750x Family,” TI. Application Report. (2008)
[13] S. Wen, “Impedance Track™ Gas Gauge for Novices,” TI. Application Report. (2008)
[14] L. Gagneur, C. Forgez, and A. L. D. Franco, “On-Line Adaptive Tuning of a Lithium-Ion Battery Cell State of Charge Observer,” IEEE Energy Conversion Congress and Exposition, pp. 307-314. (2013)
[15] C. Y. Hou, J. H. Chen, J. Hu, H. L. Huang, and S. P. Xu, “An Online Calibration Algorithm of SOC for LiFePO4 Battery by Using Characteristic Curve,” International Conference on Electric Utility Deregulation and Restructuring and Power Technologies, pp 2108-2112. (2015)
[16] L. Z. Liu, L. Y. Wang, Z. Q. Chen, C. S. Wang, F. Lin, and H. B. Wang, “Integrated System Identification and State-of-Charge Estimation of Battery Systems,” IEEE Trans. on Industrial Electronics, vol. 28, no. 1, pp. 12-23. (2013)
[17] 陳冠炷,「以剩餘容量與模糊溫度控制為基礎之鋰離子電池充電機設計與實現」,國立台灣科技大學電機工程學系碩士論文,2014年7月。
[18] 羅一峰,「鋰離子電池多階段定電流充電技術之研究」,國立台灣科技大學電機工程學系博士論文,2010年7月。
[19] 劉俊良,「以模糊田口為基礎之新型模糊五階段電池充電技術之研究」,國立台灣科技大學電機工程學系博士論文,2014年7月。
[20] 陳蓉賢,「以模糊控制為基礎之鋰離子電池模組充電技術開發」,國立台灣科技大學電機工程學系碩士論文,2011年7月。
[21] I. Patil, J. W. Choi, and S. J. Yoon, “Review of Issue and Challenges Facing Rechargeable Nanostructured Lithium Batteries,” IEEE Nanotechnology Materials and Devices Conference, vol. 1, pp. 196-197. (2006)
[22] I. Chotia, and S. Chowdhury, “Battery Storage and Hybrid Battery Supercapacitor Storage Systems : A Comparative Critical Review,” IEEE Smart Grid Technologies, pp. 1-6. (2015)
[23] 陳重諺,「以交流阻抗為基礎之鋰離子電池殘餘容量估測技術研究」,國立台灣科技大學電機工程學系碩士論文,2014年1月。
[24] 蕭維誠,「以微處理機為基礎之鋰鐵電池容量估測系統」,國立高雄應用科技大學電機工程學系碩士論文,2014年7月。
[25] 陳俊達,「鋰離子電池剩餘容量估測系統之研製」,國立台灣科技大學電機工程學系碩士論文,2012年7月。
[26] Z. X. Miao, L. Xu, V. R. Disfani, and L. L. Fan, “An SOC-Based Battery Management System for Microgrids” IEEE Trans. on Smart Grid, vol. 5, no. 2, pp. 966-973. (2014)
[27] L. Pei, R. G. Lu, and C. B. Zhu, “Relaxation Model of the Open-Circuit Voltage for State-of-Charge Estimation in Lithium-Ion Batteries,” IET Electrical System in Transportation, vol. 3, no. 4, pp. 112-117. (2013)
[28] M. Coleman, C. K. Lee, C. B. Zhu, and W. G. Hurley, “State-of-Charge Determination from EMF Voltage Estimation : Using Impedance, Terminal Voltage, and Current for Lead-Acid and Lithium-Ion Batteries,” IEEE Trans. on Industrial Electronics, vol. 54, No. 5, pp. 2550-2557. (2007)
[29] M. W. Cheng, Y. S. Lee, M. Liu, and C. C. Sun, “State-of-Charge Estimation with Aging Effect and Correction for Lithium-Ion Battery,” IET Electrical System in Transportation, vol.5, no.2, pp. 70-76. (2015)
[30] Y. S. Lee, W. Y. Wang, and T. Y. Kuo, “Soft Computing for Battery State-of-Charge (BSOC) Estimation in Battery String Systems,” IEEE Trans. on Industrial Electronics, vol. 55, no. 1, pp. 229-239. (2008)
[31] C. P. Zheng, L. Y. Wang, X. Li, W. Chen, G. Yin, and J. C. Jiang, “Soft Computing for Battery State-of-Charge (BSOC) Estimation in Battery String Systems,” IEEE Trans. on Industrial Electronics, vol. 62, no. 8, pp. 4948-4957. (2015)
[32] Panasonic Inc., “Lithium Ion Battery-NCR18650B,” Specification Report, ver. 13.11 R1. (2012)
[33] 魏若芳,「串聯鋰離子電池模組化電池管理系統研製」,國立台灣科技大學電機工程學系碩士論文,2011年7月。
[34] 陳厚亘,「應用控制區域網路匯流排於電動車之研究」,國立台北科技大學車輛工程學系碩士論文,2012年7月。
[35] S. Corrigan, “Controller Area Network Physical Layer Requirements,” TI. Application Report. (2008)
[36] Zeroplus CO., LTD., “Controller Area Network Physical Layer Requirements,” Technical Report. (2008)
[37] Microchip Technical Inc., “Controller Area Network Physical Layer Requirements,” Application Report. (2012)
[38] 惠汝生,「LabVIEW 8.X圖控程式應用」,全華出版社,2006年10月。

無法下載圖示 全文公開日期 2021/07/29 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 2021/07/29 (國家圖書館:臺灣博碩士論文系統)
QR CODE