簡易檢索 / 詳目顯示

研究生: 蔡翔秦
Hsiang-Chin Tsai
論文名稱: 含各種不同分散中心及軟鏈節水性聚氨基甲酸酯樹脂之合成、特性及其應用於耐隆織物透濕防水加工之研究
Preparation, Characteristics and Application of Aqueous Polyurethane Containing different dispersing center and soft segmen
指導教授: 洪伯達
Po-Da Hong
顏明雄
Meng-Shung Yen
口試委員: 張豐志
none
汪輝雄
none
王英靖
none
陳耿明
none
陳建智
none
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 168
中文關鍵詞: 水性聚氨基甲酸酯樹脂物性軟鏈節分散中心耐隆織物透濕防水加工
外文關鍵詞: dispersing center, soft segment, aqueous polyurethane, physical properties, application
相關次數: 點閱:257下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文針對含不同離子性之分散中心及軟鏈節進行各種水性聚胺基甲酸酯(polyurethane,PU)之合成及各項物性探討。首先固定軟鏈節種類變化不同離子性的分散中心合成各種離子型水性PU,探討分散中心種類及其離子性對合成水性PU之分散液性質、成型薄膜之熱性質、機械性質及應用於耐隆織物透濕防水加工之影響。其次,以末端為雙醇含甲氧基聚乙二醇的化合物為非離子分散中心,變化不同分子量的酯型或醚型的軟鏈節合成非離子型水性PU,探討水性PU之分散液性質、成型薄膜之熱性質及應用於耐隆織物透濕防水加工之影響。本論文進而固定N-甲基二乙醇胺為陽離子型分散中心,變化不同分子量的聚酯二醇(PCL)或聚醚二醇(PEG、PPG及PTMG )為軟鏈節,探討軟鏈節組成對合成PU分散液之溶液性質、成型薄膜之熱性質及其應用於耐隆織物透濕防水加工之影響。最後,為改善陽離子型及非離子型PU之缺點,將非離子PU依不同比例摻混到陽離子PU中,探討摻合物之各項性質。本論文之各章節結果歸納如下:
    一、針對變化分散中心種類之合成PU方面,PU分散液之表面張力以非離子型PU > 陰離子型PU > 陽離子型PU。PU分散液與未處理耐隆織物間之接觸角以非離子型PU為最大,其次為陰離子型PU及陽離子型PU;陽離子型PU與陰離子PU接觸角之變化趨勢與其表面張力相同。除了非離子型PU的N-PDEA2000 PU及陰離子型的EES-200L PU具有兩個軟鏈節的熔點(Tms)外,其餘合成PU僅有一個Tms且差異不大,出現在22~25℃間。另外發現PU之軟鏈節熱焓受分散中心種類影響很大。加工織物之透濕度以非離子型PU最佳;陽離子PU加工織物則具有最佳的耐水壓。
    二、針對不同軟鏈節組成之側鏈含甲基聚乙二醇非離子型水性PU之方面,PU分散液之表面張力大小依序為NPEG-PU > NPTMG-PU > NPPG-PU > NPCL-PU。PU分散液之粒徑以NPCL-PU為最大;粒徑則隨軟鏈節之分子量增大而變小。PU分散液對未處理的耐隆織物表面接觸角之趨勢與表面張力相同。PU薄膜之玻璃轉移溫度(Tgs)以NPCL-PU > NPEG-PU > NPPG-PU > NPTMG-PU;且隨軟鏈節分子量的增大而降低。其軟鏈節熔點(Tms)以NPEG-PU為最高,其次依序為NPCL-PU、NPTMG-PU,以NPPG-PU為最小;其Tms隨軟鏈節之分子量增大而提高。PU塗佈織物之透濕度為NPEG-PU > NPTMG-PU > NPPG-PU > NPCL-PU;且隨軟鏈節分子量增大而增加。另外,發現部分加工織物在進行耐水壓試驗後,其成型薄膜會從加工織物表面脫離的不良情況。
    三、針對含不同軟鏈節組成N-甲基二乙醇胺系陽離子型水性PU之方面,PU分散液之表面張力為CPEG > CPTMG > CPPG > CPCL;且隨軟鏈節分子量增長而降低。分散液粒徑大小以軟鏈節為CPCL > CPPG > CPEG > CPTMG;且隨軟鏈節長度增長而提高。不論Tgs或Tms皆以CPEG最大,其次為CPCL、 CPTMG 、 CPPG最小。軟鏈節分子量需超過2000g mole-1後其domain才會有明顯的形成,而產生明顯的軟鏈節結晶。另外由DMA中發現,PU之微相分離程度以CPTMG > CPPG > CPCL,且隨軟鏈節分子量之增加而提高,PU薄膜之可撓性亦隨軟鏈節分子量之增加而增大。在軟鏈節對合成PU成型薄膜機械性質之影響方面,其抗張強度以PTMG者為最大,其次為PCL、PPG最小,且隨軟鏈節分子量之增加而下降,超過2000後又增大,伸度則相反。就塗佈加工織物之透濕度以軟鏈節CPEG > CPTMG > CPPG > CPCL,此數值遠低於前章的非離子PU。而耐水壓以CPTMG > CPCL > CPPG > CPEG;在軟鏈節分子量的影響方面,透濕度以軟鏈節分子量2000>3000>1000,而耐水壓以1000 > 3000 > 2000。另外發現加工織物之表觀性質會隨時間的增加而產生黃變。
    四、針對非離子PU/陽離子PU摻合物方面,摻合物時成型薄膜之TgS 、硬鏈節的熱焓(△HH)隨N-PDEA PU摻含量增多而下降;軟鏈節熱焓(△Hs)則隨摻含量增加而上升;另外軟鏈節熔點與硬鏈節熔點在少量摻合時影響不大,但摻合量超過25%以上時開始下降。在機械性質方面,N-PDEA PU其成型薄膜強力較N-MDEA PU為低。就摻合物的機械性質而言,其強力隨N-PDEA PU摻合量之增加而降低,伸度則增大,惟少量的摻合N-PDEA PU (5%時)對成型薄膜強力影響不大且可有效的提升成型薄膜的伸度。在塗佈加工織物方面,摻合物加工織物透濕性遠及耐水壓均獲得提升且其表觀性已不會產生黃變。


    This study is focus on the synthesis, characteristic of aqueous polyurethane containing different dispersing center and soft segment and its application on coatings. In chapter 2, a series of waterborne polyurethane (WBPU) with different dispersing center of ionicity were synthesized by using 4,4-methylene bis(isocyanatocyclohexane, H12MDI), polytetramethylene glycol with molecular weight of 2000 (PTMG2000), and a series of ionic compound as hard segment, soft segment and dispersing center, respectively. The solution properties of the WBPU dispersion and thermal properties, mechanical properties and coated fabric were investigated.
    In chapter 3, a series of nonionic aquesou PU(NAPU) containing side chain poly(ethylene glycol) monomethyl ether (PEGME) were synthesized using 4,4-methylene bis(isocyanatocyclohexane), the nonionic dispersing center produced by isophorone diisocyanate, N-diethanol amine and PEGME and a series of soft segments (PEG, PPG, PTMG and PCL) with a different molecular weight. The solution properties of the WBPU dispersion and thermal properties, mechanical properties and coated fabric were investigated.
    In chapter 4, cationic aqueous polyurethane (CAPU) were prepared by the acetone process using H12MDI, N-methyldiethyolamine (N-MDEA) and a series of various polydiols (polyethylene glycol (PEG), polypropylene glycol (PPG) and polytetramethylene glycol (PTMG) for ester-type polyols and polycaprolactone (PCL) for ester-type polyol) with a different molecular weight (Mn=1000, 2000 and 3000g/mole). The solution properties of the WBPU dispersion and thermal properties, mechanical properties and coated fabric were investigated.
    In chapter 5, in order to improve the water vapor permeability (WVP) of CAPU and waterproof of NAPU, The PU blend of CAPU and NAPU with different weight ratio was studied. The results are summed in the following observations:
    1. Synthesis, physical properties of aqueous polyurethane with different dispersing center and its application on coating.
    The surface tension followed the order: NAPU > AAPU > CAPU. For the surface tension of the nonionic WBPU increased as a longer PEGME side chain length. The surface tension of AAPU with sulphonic acid sodium salt (EES-L200 PU) was higher than that of AAPU with carboxylic acid group, and the carboxylic group-based anionic WBPU decreased with increasing the length of methylene side chains; in addition, the surface tension of CAPU were found to be N-butyldiethanolamine-based PU > N-ethyldiethanolamine-based PU > N-methyldiethylamine-based PU. For the contact angle of WBPU dispersion on untreated nylon fabric, the sequence followed the order: NAPU > AAPU > CAPU. Expecting for NAPU, the effect of dispersing center on the contact angle was the same as CAPU and AAPU. As for the thermal properties, the melting point of soft segment (Tms) of WBPU was almost not affected by the ionicity of dispersing center, but the heat of fusion of the soft segment (ΔHs) was greatly affected. Expecting for the NAPU with side chain length of 2000g/mole (N-PDEA2000 PU) and EES-L200 PU having two obviously Tms, the other WBPUs only had a Tms at 22~27 C. For dynamic mechanical analysis, the glass transition temperature of the soft segment followed the order: N-BDEA PU > N-EDEA PU > N-MDEA PU for CAPU; EES-L200 PU > DMBA PU > DMPA PU for AAPU; NAPU with side chain length of 750g/mole > NAPU with side chain length of 550g/mole > nonionic WBPU with side chain length of 2000g/mole. The tensile strength of WBPU film showed as AAPU > CAPU > NAPU, however the elongation showed the opposite trend.
    2. Synthesis, physical properties of nonionic aqueous polyurethane with different soft segment composition and its application on coating.
    The surface tension of PU dispersion and its contact angle to untreated nylon fabric are higher for the ether-based PU dispersion than for the ester-based PU dispersion, with a sequence of NPEG-PU > NPTMG-PU > NPPG-PU > NPCL-PU. Both the surface tension and the contact angle between PU dispersion and nylon fabric increase upon increasing the Mw of the soft segment. As for the thermal property of PU film, the Tgs of NPCL-PU is the highest, followed by NPEG-PU, NPTMG-PU and NPPG-PU, and the Tgs decreases with the increase in the length of the soft segment. The Tms follows the order: NPEG-PU > NPCL-PU > NPPG-PU > NPTMG-PU, and the Tms increases upon increasing the soft segment length. As regard to PU coated fabric, the trend of WVP is NPEG-PU > NPTMG-PU > NPPG-PU > NPCL-PU, which increases with the increasing the soft segment length. With regarding to application for the coating, the coated-PU with PEG-PU has an excellent WVP.
    3. Synthesis, physical properties of MDEA series cationic aqueous polyurethane with different soft segment composition and its application on coating.
    The results showed the ether-based PU showed a higher surface tension value, contact angle and WVP with a sequence of CPEG-PU > CPTMG-PU > CPPG-PU > CPCL-PU, and it increases with increasing Mn of the soft segment. As for the thermal properties, the PEG-PU has the highest glass transition temperatures of the soft segment (Tgs) and its melting point (Tms) than those of CPCL-PU, CPTMG-PU and CPPG-PU. For the thermal stability of CAPUs casting film, the PEG-PU has ideal thermal stability, followed by PTMG-PU and PCL-PU, and the CAPU with a larger Mn of the soft segment having better thermal stability. Besides, the PTMG-PU has excellent tensile strength, followed by PCL-PU and PPG-PU. For coated fabric, the trend of WVP followed the order: CPEG-PU > CPTMG-PU > CPPG-PU > CPCL-PU, while the WP followed the order: CPTMG-PU > CPCL-PU > CPPG-PU > CPEG-PU. Finally, the CAPU-coated fabric has an excellent performance after washing and its wash-durability was still 80%.
    4. The Physical Properties of Aqueous Nonionic Polyurethane Blend with Aqueous Cationic Polyurethane
    The NAPU has a lower Tgs, Tms, TmH and ΔHH and tensile strength than CAPU. The tensile strength of PU blends decreases as the content of N-PDEA 750 PU increases. When the low blend ratio of N-PDEA 750 PU (e.g. 5%), the tensile strength of casting film only shows less influence that can improve the elongation effectively. In terms of coating treated fabrics, NAPU coated fabrics show lower waterproof than those treated by cationic PU. However, the WVP and anti-yellowing of the NAPU coated fabrics are significantly better than the one treated by CAPU.

    中文摘要 ------------------------------------------------------------ VIII Abstract ------------------------------------------------------------ VIII 致謝 --------------------------------------------------------------- VIII 目錄 ------------------------------------------------------- VIII 圖表索引 --------------------------------------------------------------- VIII 第一章 緒論---------------------------------------------------------- 1 1-1 序言---------------------------------------------------------- 1 1-2 文獻回顧------------------------------------------------------- 3 1-2-1 水性PU發展及製備之相關研究----------------------------- 3 1-2-2 軟鏈節種類之相關研究----------------------------------------- 5 1-2-3 PU離子性之相關研究------------------------------------------ 9 1-3 本論文之研究目的----------------------------------------------- 15 第二章 含不同離子性分散中心水性PU之合成、物性及其應用於-------------- 17 2-1 前言--------------------------------------------------------- 17 2-2 實驗方法------------------------------------------------------- 19 2-3 結果與討論----------------------------------------------------- 35 2-3-1 合成物之鑑定與分析-------------------------------------------- 35 2-3-2 離子中心種類對各種水性PU其分散液性質之影響------------------ 41 2-3-3 分散中心種類對PU成型薄膜熱性質之影響--------------------------- 46 2-3-4 離子中心種類對水性PU成型薄膜機械性質之影響--------------------- 55 2-3-5 合成PU對加工織物透濕防水性之影響----------------------------- 58 2-4 結論---------------------------------------------------------- 60 第三章 含不同軟鏈節組成之側鏈含甲基聚乙二醇非離子型水性PU之合成、其物性及其應用於耐隆織物透濕防水加工------------------------------------------------ 61 3-1 前言---------------------------------------------------------- 61 3-2 實驗材料及方法------------------------------------------------ 62 3-3 結果與討論----------------------------------------------------- 70 3-3-1 合成物之鑑定與分析-------------------------------------------- 70 3-3-2 軟鏈節組成對側鏈含PEGME非離子型PU分散液溶液性質之影響---------- 74 3-3-3 軟鏈節組成對側鏈含PEGME非離子型PU成型薄膜熱性質之影響---------- 84 3-3-4 非離子型PU之軟鏈節組成對耐隆塗佈加工織物透濕性之影響----------- 86 3-4 結論---------------------------------------------------------- 88 第四章 含不同軟鏈節組成陽離子型水性PU之合成、其物性及其應用----------- 89 4-1 前言-------------------------------------------------------- 89 4-2 實驗方法--------------------------------------------------- 91 4-3 結果與討論------------------------------------------------ 101 4-3-1 合成物之鑑定與分析-------------------------------------------- 101 4-3-2 不同軟鏈節種類陽離子型PU分散液之水溶液性質-------------------- 105 4-3-3 軟鏈節種類對N-MDEA系陽離子型PU成型薄膜熱性質之影響------------- 111 4-3-4 軟鏈節種類對N-MDEA系陽離子型PU成型薄膜機械性質之影響----------- 117 4-3-5 軟鏈節種類N-MDEA系陽離子型PU對Nylon塗佈加工織物物性之影響------ 120 4-4 結論-------------------------------------------------------- 122 第五章 側鏈含PEGME非離子型PU與陽離子水性PU摻合物之物性及其應用於耐隆織物透濕防水加工---------------------------------------------------------------- 123 5-1 前言----------------------------------------------------------- 123 5-2 實驗材料及方法------------------------------------------------- 126 5-3 結果與討論-------------------------------------------------- 130 5-3-1 陽非離子型PU及其與陽離子PU摻合物之成型薄膜之熱性質--------- 130 5-3-2 陽非離子型PU及其與陽離子PU摻合物之成型薄膜機械性質------------ 132 5-3-3 陽非離子型PU及其與陽離子PU摻合物加工織物物性之影響------------- 136 5-4 結論----------------------------------------------------------- 142 第六章 總結---------------------------------------------------------- 143 參考文獻------------------------------------------------------ 146 附錄 作者簡介------------------------------------------------------ 153

    1. X. W. Yan and Y. X. Yu,”a novel synthetic strategy to aromatic – diisocyanate -based waterborne polyurethane”, J. Appl. Poly. Sci.,, Vol.70, p.1621-1626 (1998).
    2. C. Lee., and B. K. Kim.,”basic structure property behavior of polyurethane cationomers”, J. Appl. Poly. Sci., Vol.32, p.1983-1989 (1994).
    3. K. C. Frisch, S. L. Hsu, H. X. Xaio, H. H. Szmant., “polyurethane ionomers. structure-properties relationships of polyurethane ionomers”, J. Appl. Poly. Sci., Vol.29, p.2467-2479 (1984).
    4 W. C. Chan, and S. A. Chen,”polyurethane ionomers: effects of emulsification on properties of hexamethylene diisocyanate-based polyether polyurethane cationomers”, Polymer, Vol.29 , p.1995-2001 (1988).
    5. 黃慶忠, 化工技術, Vol.10, No.5, p.41-69 (1987)
    6. 許友耕, 化學工業資訊月報, No.9, p.8-18(1980)
    7. G. N. Oertal., D. Dieterich, “polyurethane handbook”, Hanser Publishers, Munich; New York, pp.24 (1985)
    8. A. Lilanonitkul, S. L. Cooper, Adv. Urethane Sci. Technol. Vol.7, p.163(1979)
    9. B. Fu, and W. J. Macknight, “structure-property relationships containing monodisperse 2,4-toluene diisocyanate/butanediol hard segments”, Rubber Chenistry and Technol. Vol.59, p.896 (1986)
    10. T. A. Speckhard, S. L. Cooper, Rubber Chem. Technol, “ultimate tensile properties of segmented polyurethane elastomers: factors leading to reduced properties for polyurethanes based on nonpolar soft segments”Vol.59, p.405 (1986)
    11. T. R. Hesketh., J. W, C, Van bogart, S. L. Cooper, “differential scanning calorimetry analysis of morphological changes in segmented elastomers”, Polymer Eng. and Sci., V.20, p.190, (1980).
    12. E. J. Woo., G. Farber, R. J. Farries. C. P. Lillya, J. C. W. Chien, “structure-property relationships in thermoplasti c elastomers: 1. segmented polyether-polyurethanes.”, Polym. Eng. and Sci., Vol.25, p.834, (1985)
    13. Z. S. Petrovic, B. Simendic, “study of the effect of soft-segment length and concentration on properties of polyetherurethanes. ii. the effect on mechanical properties”, Rubber. CHem. and Technol., Vol.58, p.701(1985)
    14. C. G. Seefried, J. V. Kolesk, F. E. Critchfrield, “thermoplastic urethane elastomers. III. effects of variations in isocyanate structure”, J. Appl. Poly. Sci., Vol.19, p.2493 (1975)
    15. N. S. Schneider, C. S. P. Suns, R.W. Matton, J. L. llinsger, Macromolecules,Vol.8, p.62. (1975)  
    16. M. S. Yen, K. L. Cheng, “the effects of soft segments on the physical properties and water vapor permeability of H12MDI-PU cast films” J. Appl. Poly. Sci., 52, p.1707(1994)
    17. B. K. Kim, Y. M. Lee., Colloid & Polymer Science, 956-961(1994)
    18. J.E. McGrath, G.L. Wilkes, “siloxane-urea segmented copolymers. 1. synthesis and characterization of model polymers from mdi and alpha , omega -bis(aminopropyl)polydimethylsiloxane”, Polym, Bull., 8, p.543 (1982).
    19. J. E. McGrath, G.L. Wilkes, Polymer, 25, p.1807 (1984).
    20. P. E. Gibson, S.L. Cooper,“polydimethylsiloxane-polyurethane elastomers: synthesis and properties of segmented copolymers and related zwitterionomers”, J. Polym. Sci. Polym.Phys. Ed 23, p.2319 (1985).
    21. H. Kazama, K Imai,”Synthesis of polyurethane-polysiloxane graft copolymer using uniform-size poly(dimethylsiloxane) with a diol end group”,Polymer, p.30, (1989).
    22. Noshay and J.E. McGrath, Block CopolymersOverview and Critical Survey, Academic Press, New York, (1977).
    23. R. Adhikari; P. A. Gunatillake, S. J. Mccarthy; G. F. Meijs, “Mixed macrodiol-based siloxane polyurethanes: effect of the comacrodiol structure on properties and morphology”, J. Appl. Poly. Sci., 78, p.1071, (2000)
    24. M. V. Pandya, D. D. Seshande, D. G. Hundiwale, “Effect of diisocyanate structure on viscoelastic, thermal, mechanical and electrical properties of cast polyurethanes”, J. Appl. Poly. Sci., Vol.32, p.4959 (1986)
    25. H. V. Pandya, D. D. Seshande and D. G. Hundiwale, “Thermal behavior of cast polyurethane elastomers”, J. Appl. Poly. Sci.,Vol.35 , p.1803 (1988)
    26. John. W. C, S. L. Cooper, Van Bogart, Gibson. P. E., “Structure-Property Relationships in Polycaprolactone-Polyurethanes”, J. appl. Polym. Sci. Phys. Ed., vol.21, p.65-95 (1983)
    27. S. L. Cooper,”Diffusion of gases through polyurethane Block Polymer”, J. Appl. Poly. Sci., vol.23, p.201 (1978)
    28. C. G. Seefried, J. V. Kolesk, F. E. Critchfield, “Thermoplastic urethane elastomers. I. Effects of soft-segment variations”, J. Appl. Poly. Sci.,Vol.19, p.2503 (1975)
    29. D. S. Huh and S. L. Cooper., “Dynamic mechanical properties of polyurethane block polymers”, Polym. Ens. and Sci., Vol.11, No.5, p.369 (1971)
    30. S. L. Samuels, G. L. Wilkes., J. of Polym. Sci., Polym. Phys. Ed., Vol.II, p.807 (1973)
    31.C. P. Christenson, M. A. Harthcock., “Model MDI/BUTANEDIOL polyurethanes: molecular structure morphology, physical and mechanical properties”, J. of Polym. Sci.; Polym. Phys. Ed.,Vol.24, p.1401 (1986)
    32. S. P. Zoran, J. Ivan, “Effect of soft-segment length and concentration on phase separation in segmented polyurethanes”, J. of Polym. Sci. ; Polym. Phys. Ed. .Vol.27, p.545 (1989)
    33. G. L. Wilkes, S. Abousahr., Macromolecules, vol 14, p.485 (1981)
    34. Heikens., A. Meijers, P. Peth., Polymer, Vol.9, p.15 (1968)
    35. J. Blackwell, M. R. Nagarajan and T. B. Hoitink, polymer, vol.52, p.920 (1979)
    36. Y. Minoura et.al., “crosslinking and mechanical properties of lquid rubber em dash 1. curative effect of aliphatic diols.” Rubber Chemistry and Technology, v52, p.920-948 (1979)
    37. Y. Minoura et.al., “Crosslinking and Mechanical Property of Liquid Rubber em Dash 1. curative effect of aliphatic diols.” J. Appl. Polym. Sci., vol.22, p.1817-1844 (1978)
    38. T. O. Ahn﹐S. U. Jung﹐H. M. Jeong S. W. Lee﹐”The properties of polyurethanes with mixed chain extenders and mixed soft segments”﹐J. Appl. Polym. Sci., Vol.51﹐P.43~49 (1994).
    39. R. W. Seymour., G. M. Estes and S. L. Cooper., “Infrared studies of elastomer Ι, Hydrogen bonding”, Macromolecules, Vol.3, p.579 (1970)
    40 L. Mashlyakovskiy, V. Zaiviy, G. Simeone, C. tonelli, “fluoropolyethers end-capped by polar functional groups. I. kinetic approach to the reaction of hydroxy terminated fluoropolyethers with cycloalyphatic and aromatic dissocyanates”, Journal of Polymer Science: Part A: Polymer Chemistry, Vol.37, p.557-570(1999).
    41. K. matsuda, H. Ohmura, Y. Tanaka, T. Sakai., “emulsion of polyurethane having thermosetting properties. Ι preparation”, J. appl. Polym. Sci., vol.23, p.141-153 (1979)
    42. K. C. Frisch, S. L. Hsu., H. X. Xaio., H. H. Szmant, “polyurethane ionomers. structure-properties relationships of polyurethane ionomers”, J. Appl. Poly. Sci., Vol.29, p.2467-2479 (1984).
    43. K. K. S. Hwng, T. A. Speckhard, S. L. Cooper, J. Macromol. Sci.-Phvs 23, p.153, (1984)
    44. Y. X. Hai, M. R. Nagarajan, T. G. Grasel, P. E. Gibson and S. L. Cooper, “Properties of ultraviolet cured polydimethylsiloane-urea acrylates”, J. Polym. Sci. Phys., 23, p.2319 (1985)
    45. W. Marconi, A. Martinelli, A. Piozzi, “synthesis and characterization of new amphiliphilic polyurethane compositions”, Eur. Polym. J, Vol.31 n.2, p.131-134 (1995)
    46. L. Chen﹐W. Y. Ma﹐X. H. Yu, C. Z. Yang﹐”synthesis and antimicrobial activity of novel polyurethane ionomers”﹐Chinese Journal of Polymer Science Vol.41﹐No.3﹐p.205~209(1996).
    47. 郭淑琴、顏明雄﹐”酯醚型混合軟鏈節水性PU樹脂之合成、構造與物性及其對耐龍織物之透濕防水之加工研究”﹐國立臺灣科技大學纖維及高分子研究所博士論文 (1998)。
    48. M. Barikani, M. Valipour Ebrahimi, S. M. Seyed Mohaghegh, ”preparation and characterization of aqueous polyurethane dispersions containing ionic centers”, J. Appl. Polym. Sci., Volume 104, , p.3931-3937, (2007).
    49. B. K. Kim﹐T. K. Kim and H. M. Jeong, ”Aqueous dispersion of polyurethane anionomers from H12MDI/IPDI﹐PCL﹐BD and DMPA”﹐J. Appl. Poly. Sci.,Vol.62﹐p.371~378 (1994).
    50. Freij-Larsson, Christina; Wesslen, Bengt, “grafting of polyurethane surfaces with poly(ethylene glycol)” J. Appl. Poly. Sci., 50, p.345 (1993)
    51. M. Barikani; M. S. M. Seyed Mohaghegh;A. A. Entezami;”The effect of grafted poly (ethylene glycol monomethyl ether) on particle size and viscosity of aqueous polyurethane dispersions,Colloids and surfaces, 276, p.95-99, (2006)
    52. K. Noll, et al. “process for the production of aqueous dispersions of polyurethane polyureas, the dispersions obtainable by this process and their use as coating compositions” U.S.Patent 3,905, p.929
    53. S, Mohanty., and N, Krishnamurt., “synthesis and characterization of aqueous cationomeric polyurethane and their use as adhesives”, J. Appl. Poly. Sci., Vol.62, p.1993-2003 (1996).
    54. P. Markush., ” stable, colloidal, aqueous dispersions of cross-linked urea-urethane polymers and their method of production”, U.S. Patent.4, 408008 (Oct. 4, 1983).
    55. C. K. Kim, and B. K. Kim, “IPDI-based polyurethane ionomer dispersions. Effects ionic, nonionic hydrophilic segments, and extender on particle size and physical properties of emulsion cast film”. J. Appl. Polym. Sci., vol.43, p.2295-2301 (1991)
    56. X. Wei., Q. HE, and X. YU, “synthesis and properties of polyoxyethylated Amine polyurethane ionomers”, J. Appl. Polym. Sci., vol.67, p.2179-2185 (1998)
    57. B. K. Kim, and Y. M. Lee, “aqueous dispersion of polyurethane cotaining ionic and nonionic hydrophilic segment”, J. Appl. Polym. Sci., Vol.54, p.1809-1815 (1994)
    58. M. S. Yen., S. C. Kuo, ”effects of a soft segment component on the physical properties of synthesized waterborne polyurethanes by using triblock ester-ether copolydiol as the soft segment”, Journal of Polymer Research, Vol. 5, No.2, p.125-131 (1998)
    59. M. S. Yen., S. C. Kuo,” PCL-PEG-PCL Triblock Copolydiol-Based Waterborne Polyurethane. I. effects of the soft-segment composition on the structure and physical properties”, J. Appl. Polym. Sci, Vol. 65, p.883-892, (1997).
    60. M. S. Yen., S. C. Kuo.,” PCL-PEG-PCL Triblock Ester-Ether Copolydiol-Based Waterborne Polyurethane. II. Effect of NCO/OH mole ratio and DMPA Content on the Physical Properties”, J. Appl. Polym. Sci., Vol 67, p.1301-1311, (1998).
    61 M. S. Yen., S. C. Kuo., ” effects of mixing procedure on the structure and physical properties of ester-ether-type soft segment waterborne polyurethane”, J. Appl. Polym. Sci., Vol.61, p.1639-1647(1996)
    62. Y. Naka, Hirakate, K. Kawakami, Kyoto, “moisture permeable waterproof coated fabric and method of making the same”, United States Patent 442900 (1984)
    63. G. R. Lomax, “lightweight breathable fabric”, J. of coated fabrics, 15, p.115 (1985)
    64. W. R. Gore, B. A. Samuel, “waterproof laminate “, U.S. Patent 4194041, (1980).
    65. Yasushi Naka, Hiyoshi Kawakami, Kyoto “moisture-permeable Waterproof Coated Fabric and Method of Making the same” United states Patent 4429000, (1984).
    66 V. E. Keeley, ”Transfer coating with polyurethanes”, J. of coated fabrics, V20, p.176 (1991).
    67. G. R. Lomax, ”the design of waterproof, water vapor permeable fabrics”. J. of coated fabrics, Vol.15, p.40 (1985).
    68. Enomoto, Masao, Suehiro, Kazuaki, Muraoka, Yoichiro, ”effect of composition and coagulation structure of coating polymers made from hydrophobic and hydrophilic polyurethane resin on moisture permeable fabrics”, Sen-i kikai Gakkai Shi/Journal of the textile machinery society of Japan, V50, n9, p.233 (1997).
    69. Ushioda, H;Nakajima,T ”Heat and moisture transport and comfort of chemical protective clothings for agriculture”,Sen-I Gakkaishi, Vol.52, No.5, p.268 (1996)
    70. Lina Zhang and Qi Zhou, ”water resistant film from polyurethane/nitrocellulose coating to regenerated cellulose”, Ind. Eng. Chem. Res,Vol36, No7, p.2651(1997).
    71. M. Enomoto, K. Suehiro, T. Tanaka, Y. Kiso, ”effect of composition and stucture of coating polymers on moisture transporting properties in water/moisture permeable fabrics prepared by wet coagulation Process”,纖維機械學會誌,Vol49, No2, p.69 (1996).
    72. L. Gottwald,” water vapor permeable pur membranes for weatherproof laminates”, Journal of coated fabrics, V25, p.168(1996).
    73. Dieterich, D, Rieck, J. N, “Aqueous polyurethane systems and their possible uses.” Adhesives Age, v 21, n 2, p.24-28 (1978)
    74. Abouzahr, S.; Wilkes, G. L.; Ophir, Z. “structure-property behaviour of segmented polyether-MDI-butanediol based urethanes:Effect of composition ratio”. Polymer, 23, p.1077. (1982)
    75. D. Dieterich, “aqueous emulsions, dispersions and solutions of polyurethanes;synthesis and properties”, progress in organic coatings, 9, p.281~340, (1981)
    76. Perry, E.M., Aqueous polyurethane- The time is right, AATCC symposium, coated favics: Meeting the challenges of the 90’s, p.74, April, 1992
    77. H. H. Wang,; C. T. Gen, ”synthesis of anionic water-borne polyurethane with the covalent bond of a reactive dye”, J. Appl. Polym. Sci., v 84, n 4, Apr 25, 2002, p.797-805
    78. Hsaing, M.L.; Chang, C.H.; Chan, M.H.; Chao, D.Y. “A study of polyurethane ionomer dispersant” J. Appl. Polym. Sci., v 96, n 1, Apr 5, 2005, p.103-112
    79. Polizos, G.; Georgoussis, G.; Kyritsis, A.; Shilov, V.V.; Shevchenko, V.V.; Gomza, Yu. P.; Nesin, S.D.; Klimenko, N.S.; Wartewig, S.; Pissis, P. “Structure and electrical conductivity in novel polyurethane ionomers”, Polymer International, v 49, n 9, Sep, 2000, p. 987-992
    80. M. S. Yen, P. Y. Chen, H. C. Tsai, “synthesis, properties, and dyeing application of nonionic waterborne polyurethanes with different chain length of ethyldiamines as the chain extender”, J. Appl. Polym. Sci., v 90, n 10, Dec 5, 2003, p.2824-2833
    81 C. K. Kim, B. K. Kim, H. M, Jeong, “aqueous dispersion of polyurethane ionomers from hexamethylene diisocyanate and trimellitic anhydride” Colloid and Polymer Science, v 269, n 9, Sep, 1991, p. 895-900
    82. David, Donald Joseph, and H. B. Staley., “analytical chemistry of polyurethanes”, Wiley-Interscience, New York, vol.16, No 9 , p.40 (1969)
    83. C.P. Chwang, C. L. Wang, Y. M. Kuo, S. N. Lee, A. Chao, D. Y. Chao, “on the study of polyurethane ionomer - Part I”, Polymers for Advanced Technologies, v 13, n 3-4, p.285 (2002)
    84. Visser, S. L. Cooper, “effect of neutralizing cation type on the morphology and properties of model polyurethane ionomers”, Polymer, Vol.33 , No.5 , p.920(1989)
    85. Visser and S. L. Cooper, “Comparison of the physical properties of carboxylated and sulfonated model polyurethane ionomers” , Macromolecules , Vol.24, p.2576(1991)
    86. M. Prgoraro, L. D. Landro and L. Bordogna, “interactions of polyether-polyurethane with water vapor and water-methane separation selectivity”, J. Membrane. Sci, 64, p.229(1991)
    87. Y. M. Lee, J. C. Lee, B. K. Kim, ”effect of soft segment length on the properties of polyurethane anionomer dispersion”, Polymer, v 35, p.1095 (1994)
    88. C. T, Zhao, de Pinho, M. Norberta, ”design of polypropylene oxide/polybutadiene bi-soft segment urethane/urea polymer for pervaporation membranes “, polymer, V.40, p.6089 (1999)
    89. S. A. Chen, W. C. Chan, “polyurethane cationomers. I. structure-property relationships”, Journal of Polymer Science, Part B: Polymer Physics, v 28, n 9, p.1499 (1990)
    90. Christina. F. L.; Bengt, W., J. Appl. Poly. Sci., 50, 345 (1993)
    91. Jr. C. G. Seefried, J. V. Koleske, F. E. Critchfield, “thermoplastic urethane elastomers. I. effects of soft-segment variations”, J. Appl. Polym. Sci., Vol.61, p.2493 (1975)
    92. Becher P. Emulsions: theory and practice. Washington, DC: Oxford University Press, American Chemical Society; 2002

    QR CODE