簡易檢索 / 詳目顯示

研究生: 吳明燦
Ming-Tzan Wu
論文名稱: 新型平板天線設計應用於 UMTS, Wi-Fi及WiMAX
Novel Planar Antenna Design for UMTS, Wi-Fi and WiMAX Applications
指導教授: 黃進芳
Jhin-Fang Huang
劉榮宜
Ron-Yi Liu
口試委員: 徐敬文
Ching-Wen Hsue
陳國龍
Gou-Long Chen
張勝良
Sheng-Lyang Jang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 130
中文關鍵詞: 天線三頻天線WiMAXWLAN
外文關鍵詞: Antennas, triple-band antennas, WiMAX antennas, WiFi antennas, planar antennas, top loading, parasitical elements
相關次數: 點閱:179下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • WiMAX的廣泛應用與不斷推出的終端產品吸引了大多數人的注意,並且在2008年Taipei Computex被選定為主要的展覽主題,發展的趨勢與應用的需求明顯地指出這是一個即將不斷地成長的市場,此乃為研究的初始動機。
    本篇論文主要目標在於詳細介紹三個新型的天線,內容中提供了充分的數據與結果,分別依照軟體模擬與實作量測當中去做分析與比較,內文並詳盡地介紹設計天線的相關原理,並討論使用一些基本的方法讓天線在被放入模擬軟體與實際製作之前就可以估計出天線的初步工作頻帶與效能,與整個細微調整天線的過程。
    論文的天線已經完成實作,並且在經過良好校正過的無反射實驗室當中量測,基本要素如天線的反射損失 Return Loss < -10dB 在所有工作頻帶都需符合。天線的電壓駐波比 VSWR < 2 的要求,在所有工作頻帶都需符合。並擁有全方向性的輻射場型的特性。

    論文中的天線已經完成模擬與實作,並於詳細的量測中確認可以應用於下列頻帶當中:
     1740 ~ 1785MHz (傳送頻帶) 以及 1805 ~ 1880MHz (接收頻帶)應用於DCS1800 頻段的產品.
     1850 ~ 1910MHz (傳送頻帶) 以及 1930 ~ 1990MHz (接收頻帶) 應用於 PCS 與 WCDMA 1900頻段的產品.
     1920 ~ 1980MHz (傳送頻帶) 以及 2110 ~ 2170MHz (接收頻帶) 應用於WCDMA 2100頻段的產品.
     2412 ~ 2484,5150 ~ 5350,以及5725 ~ 5825MHz應用於全世界 Wi-Fi頻段的產品。
     2500 ~ 2690, 3400 ~ 3690 以及 5250 ~ 5850MHz 應用於全世界 WiMAX頻段的產品。


    The object of thesis is purposed to provide all completed processes on designing planar antennas applying to UMTS, Wi-Fi and WiMAX frequency bands, theories of electromagnetism are demonstrated to estimate antenna size and performance in early stage. Procedures of implementing three types of actual antennas have been detailed illustrated in following chapters.
    The motivation was come from that WiMAX was designated as one of topical subject on Computex 2008 in Taipei World Trade center, the tendency from coming topics and products obviously indicate this market is rapidly growing up and expanding; the research is intended to have a perspective investigation included UMTS, WiFi and WiMAX technology, and discuss topical requirements of Antenna.
    All the measurements have been performed in well calibrated anechoic chamber, in the next chapter 5, the summarized results documented all the design process and demonstrated essential performance data on proposed antenna had met expected targets with following condition:
     Antennas’ Return loss < -10dB in required working frequency bands.
     Antennas’ VSWR < 2 in required working frequency bands.
     Antenna should have Omni-Directional radiation characteristics.
    The proposed antenna had been made and checked it could meet following frequency bands.
     1740 ~ 1785 MHz (uplink) and 1805 ~ 1880 MHz (downlink) for DCS1800 applications.
     1850 ~ 1910MHz (uplink), 1930 ~ 1990MHz (downlink) for PCS and WCDMA 1900 applications.
     1920 ~ 1980MHz (uplink), 2110 ~ 2170MHz (downlink) for WCDMA 2100 applications.
     2412 ~ 2484, 5150 ~ 5350, and 5725 ~ 5825MHz for worldwide Wi-Fi applications.
     2500 ~ 2690, 3400 ~ 3690 and 5250 ~ 5850MHz for worldwide WiMAX applications.

    中文摘要 I ABSTRACT II ACKNOWLEDGEMENTS III TABLE of CONTENTS V LIST OF FIGURES IX LIST OF TABLES XIII CHAPTER 1 Introduction 1 1.1 Motivation and Background 1 1.2 Overall Research Goal and Specific Objectives 2 1.3 Overview upon WiMAX Technology 3 1.3 .1 WiMAX has potential to impact all forms of telecommunication 4 1.3 .2 Features of Fixed WiMAX 4 1.3 .3 Features of Mobile WiMAX 5 1.3 .4 WiMAX converged voice and data easy as FM radio 5 1.4 Literature Survey 5 1.5 Proposed Method of the thesis 9 1.6 Expected Results of the thesis 9 1.7 Outline of the thesis 10 CHAPTER 2 Antenna Fundamental and Characteristics 13 2.1 Antenna bandwidth and polarization characteristic 13 2.2 Directivity and Gain 14 2.3 Radiation Pattern Definitions 20 CHAPTER 3 Antenna Types and Their Features 27 3.1 Theory of monopole antenna 27 3.2 Evolution of Monopole Antenna 29 3.3 Characteristics of feeding line 34 3.3 .1 Coaxial transmission line: 36 3.3 .2 Microstrip transmission line 37 3.3 .3 Coplanar Waveguide (CPW) 38 3.4 Image Theory 40 3.5 Ground Interference Effects 43 3.6 Inverted-L Antenna (ILA) 45 3.7 Planar Inverted-F Antenna (PIFA) 48 CHAPTER 4 Standard procedure for Implementation and Measurement on designing Antennas 51 4.1 Design Method and Realization 51 4.2 Measurement in Anechoic Chamber 53 4.2 .1 Anechoic Chamber 53 4.3 Created Antenna Model for three of frequency bands 56 4.3 .1 To turn dimensions of element A 56 4.3 .2 To turn dimensions of element B 57 4.3 .3 To turn dimensions of element C 59 4.3 .4 Return Loss result between Simulation and Measurement 60 4.3 .5 Current Intensity and Distributed Density at 2.4GHz 61 4.3 .6 Current Intensity and Distributed Density at 3.4GHz 63 4.3 .7 Current Intensity and Distributed Density at 5.4GHz 65 4.3 .8 The photograph of type-1 antenna 66 4.3 .9 2D measured Radiation Patterns 67 4.4 Fine tuning Antenna as Type 2 70 4.4 .1 Features of Type-2 antenna 70 4.4 .2 Return Loss result between Simulation and Measurement 71 4.4 .3 The photograph of type 2 antenna 72 4.4 .4 Current Intensity and Distributed Density at 2.4G.Hz 73 4.4 .5 Current Intensity and Distributed Density at 3.4G.Hz 74 4.4 .6 Current Intensity and Distributed Density at 5.4G.Hz 75 4.4 .7 2D measured Radiation Patterns 76 4.4.7.1 2D measured Radiation Pattern at XY Plane 76 4.4.7.2 2D measured Radiation Pattern at YZ Plane 77 4.4.7.3 2D measured Radiation Pattern at XZ Plane 78 CHAPTER 5 Simulation and Measurement for Proposed Antenna 79 5.1 Simulation results about tuning resonant elements 79 5.1 .1 To turn dimensions of element A 79 5.1 .2 To turn dimensions of element B 80 5.1 .3 To turn dimensions of element C 82 5.2 Measurement and Simulation results 85 5.2 .1 Return Loss results between Simulation and Measurement 85 5.2 .2 The photograph of proposed antenna 88 5.2 .3 Current Intensity and Distributed Density at 2.4GHz 89 5.2 .4 Current Intensity and Distributed Density at 3.4GHz 90 5.2 .5 Current Intensity and Distributed Density at 5.4GHz 91 5.2 .6 2D measured Radiation Patterns 92 5.2.6.1 2D measured Radiation Pattern at XZ Plane 92 5.2.6.2 2D measured Radiation Pattern at XZ Plane 94 5.2.6.3 2D measured Radiation Pattern at YZ Plane 95 5.3 Features of proposed antenna 96 5.4 Summary of comparison table 96 CHAPTER 6 Conclusion and Future Work 97 6.1 Conclusion 97 6.2 Future Work 98 Reference 99 Appendix 103 Paper

    [1] Zhan Li, Yahya Rahmat-Samii, Teemu Kaiponenz, “Bandwidth study of a dual band PIFA on a fixed substrate for wireless communication,” IEEE Trans. Antennas Propagation Vol. 1, pp. 435-438, June 2003.

    [2] C. A. Balanis, Antenna Theory: Analysis and Design, 2nd Ed. ,New York: John
    Wiley & Sons, Inc., 1997.

    [3] S.-H. Yeh, K.-L. Wong, T.-W. Chiou, and S.-T. Fang, “Dual-Band planar inverted F antenna for GSM/DCS mobile phones,” IEEE Trans. Antennas Propagation., Vol. 51, pp.1124-1126, May 2003.

    [4] C. W. Chiu and F. L. Lin, “Compact dual-band PIFA with multi-resonators,” Inst. Elect. Eng. Electronics Letters., Vol. 38, pp.538-540, June 2002.

    [5] W. Choi, S. Kwon, and B. Lee, “Ceramic chip antenna using meander conductor lines,” Electron. Letters, Vol. 37, pp. 933-934, July 2001.

    [6] K.-L. Wong, G.-Y. Lee, and T.-W. Chiou, “A low-profile planar monopole antenna for multiband operation of mobile handsets,” IEEE Trans. Antennas Propagation., Vol. 51, pp. 121-125, January 2003.

    [7] R. Chair, K.M. Luk and K.F. Lee., “Simulation of Bandwidth Enhancement on the Quarter-Wave Shorted Patch By Adding a Shorting Pin,” IEEE Trans. Antennas Propagation, Vol. 1, pp. 82-85, July 2001.

    [8] Rowell C.R., Murch R.D., “A capacitively loaded PIFA for compact mobile telephone handsets,” IEEE Trans. Antennas Propagation, Vol. 45, pp. 837-842, May 1997.

    [9] Karmakar N.C., “Shorting strap tunable single feed dual-band stacked patch PIFA,” Antennas and Wireless Propagation Letters, Vol. 2, pp. 68-71, 2003.

    [10] Karmakar N.C., “Shorting strap tunable dual-band stacked PIFA,” IEEE Trans. Antennas Propagation, Vol. 3, pp. 74-77, June 2003.

    [11] F.-R. Hsiao, W.-S. Chen, K.-L. Wong, “Dual-frequency PIFA with a rolled radiating arm for GSM/DCS operation,” IEEE Trans. Antennas Propagation, Vol. 3, pp. 103-106, June 2003.

    [12] K.-L. Wong, A.-C. Chen, Y.-L. Kuo, “Diversity metal-plate planar inverted-F antenna for WLAN operation,” Electronics Letters, Vol. 39, pp. 590-591, April 2003.

    [13] H. Furuuchi, H. Morishita, H. Ide, Z. Tanaka, K. Fujimoto, “Balance-Fed Loop Antenna System for Handsets,” IEEE Antennas Propagation, Vol. 1, pp. 6-9, 1999.

    [14] W. J. Keller Ⅲ, O. J. Romero, J. Sivaraks and R. P. Garcia, “Loop antenna formed of multiple concentric irregular loops,” U.S. Patent Pub. No. 0096637 A1, May 22, 2003.

    [15] W. J. Keller Ⅲ, O. J. Romero and J. Sivaraks, “Multiband antenna formed of superimposed compressed loops,” U.S. Patent Pub. No. 0098814 A1, May 29, 2003.

    [16] M. J. Ammann, “Square Planar Monopole Antenna,” National Conference on Antennas and Propagation, 1999. IEE, pp. 37-40, 30 March -1 April 1999.

    [17] J. A. Evans and M. J. Ammann, “Planar Trapezoidal and Pentagonal Monopoles with Impedance Bandwidths in Excess of 10:1”, Antennas and Propagation SocietyInternational Symposium, 1999. IEEE, Vol. 3, pp. 1558-1561, 11-16 July 1999.

    [18] S. Honda, M. Ito, H. Seki and Y. Jingo, “A Disc Monopole Antenna with 1:8 impedance Bandwidth and Omnidirection Radiation Pattern”, International Symposium Antennas Propagation, pp. 1145-1148, Sapporo Japan, September 1992.

    [19] N. P. Agrawall, G. Kumar and K. P. Ray, “Wide-band Planar Monopole Antennas,” IEEE Transactions on Antennas and Propagation, Vol. 46, No. 2, February 1998.

    [20] P. V. Anob, K. P. Ray and G. Kumar, “Wideband Orthogonal Square Monopole
    Antennas with Semi-Circular Base,” Antennas and Propagation Society International Symposium, 2001. IEEE, Vol. 3, pp. 294-297, 8-13 July 2001.
    [21] K.-L. Wong, Y.-F. Lin, “Stripline-fed printed triangular monopole,” Electronics Letters, Vol. 33, No. 17, pp. 1428-1429, August 14 1997.

    [22] J. M. Johnson, Y. Rahmat-Samii, “The tab monopole,” IEEE Trans. Antennas Propagation, Vol. 45, No. 1, pp. 187-188, January 1997.

    [23] H.-D. Chen﹐H.-T. Chen, “A CPW-Fed Dual-Frequency Monopole Antenna,” IEEE Trans. Antennas Propagation﹐Vol. 52﹐No. 4, April 2004.

    [24] Y.-W. Chi﹐K.-L. Wong, “Internal Compact Dual-Band Printed Loop Antenna for Mobile phone Application,” IEEE Trans. Antennas Propagation﹐Vol.55﹐No.5 May2007.

    [25] J. D. Kraus and R. J. Marhefka, Antennas for all applications 3rd Ed., New York: McGraw-Hill Companies, 2002.

    [26] C. P. Wen, “Coplanar Waveguide: A Surface Strip Transmission Line Suitable for Nonreciprocal Gyromagnetic Device Applications,” IEEE Trans. Microwave Theory Tech., Vol. 17, No. 12, pp. 1087-1090, Dec. 1969.

    [27] R. N. Simons, Coplanar Waveguide Circuits, Components, and Systems, New York: John Wiley & Sons, Inc., 2001.

    [28] X. C. Lin, L. T. Wang, C. L. Lai and Y. S. Liu, “A Broadband CPW-Fed Inductive Slot Antenna,” Microwave and Optical Technology Letters, Vol. 41, No. 1, pp. 12-14, April 5 2004

    [29] X. Ding and A. F. Jacob,” CPW-Fed Slot Antenna with Wide Radiating Apertures,” IEE Proc.-Microw. Antenna Propag., Vol. 145, No. 1, pp. 104-108, February 1998

    [30] R. Chair, A. A. Kishk and K. F. Lee, “Ultrawide-band Coplanar Waveguide-Fed Rectangular Slot Antenna,” IEEE Antennas and Wireless Propagation Letters, Vol. 3, pp. 227-229, 2004.

    [31] S.-B. Chen, Y.-C. Jaio, W.-W., and F.-S. Zhang, “Modified Tshaped planar monopole antennas for multiband operation,”IEEE Transaction on Microwave Theory Technology, vol. 54,no. 8, pp. 3267-3270, Aug. 2006.
    [32] 吳適煌、3D 場型量測與天線特性評估之運用,台灣科技大學學位論文,2007 年6月。
    [33] 李國清, Planar Triple-band Monopole Antenna Design, 台灣科技大學學位論文,2008 年7月。

    無法下載圖示 全文公開日期 2013/08/11 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE