簡易檢索 / 詳目顯示

研究生: 李承霖
Cheng-Lin Li
論文名稱: 雙頻帶注入鎖定除頻器與雙頻同時震盪之壓控振盪器研究
Dual Band Injection Lock Frequency Divider and Study of Concurrent Oscillator
指導教授: 張勝良
Sheng–Lyang Jang
徐敬文
Ching-Wen Hsue
口試委員: 黃進芳
Jhin-Fang Huang
賴文政
Wun-jheng Lai
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 132
中文關鍵詞: 遲滯曲線多頻率同時震盪透過可變電容切換雙頻帶振盪器除四注入鎖定除頻器交錯耦合對震盪器除頻器鎖定範圍
外文關鍵詞: hysteresis loop, concurrent oscillation, varactor-switched dual-band oscillator, divide-by-4 injection-locked frequency divider, capacitive cross-coupled oscillator, locking range
相關次數: 點閱:220下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

在無線通訊系統中,頻率合成器是用來做訊號頻率的升降之用。在頻率合成器電路裡,壓控振盪器與除頻器是重要的核心電路之ㄧ。對壓控振盪器而言,必須提供低相位雜訊的輸出,以避免相鄰雜訊訊號經由混波轉換產生干擾。而振盪器的輸出則經由除頻器來達成降頻的工作,因此,除頻器需具有高頻操作、寬的操作頻寬及低功率消耗。

在第一部分,呈現一個使用五個電感雙頻帶之除四注入鎖定除頻器,電路主要架構為一個使用N型金氧半電晶體的交錯偶合對之壓控震盪器,共振腔由五個電感組成,加上一個並聯於共振腔用於注入訊號之N型金氧半電晶體,此晶片使用台積電矽鍺0.18微米製程,晶片面積為0.865 ×0.872 mm2,在交錯偶合對之閘極偏壓可控制電路的功耗,並在頻率鎖定範圍與電路功耗大小之間作取捨找出最佳偏壓點為0.7 V,此電路工作電壓為1.1 V,整體功耗為10.34 mW,再注入訊號功率0 dBm之除四鎖定頻率範圍為9.8~14.5 GHz,百分比為38.68 %。

第二部分,介紹一個雙主頻率同時震盪之壓控震盪器,晶片使用台積電矽鍺0.18微米製程,晶片面積為1.057 ×1.071 mm2,電路主要架構部分使用兩個壓控震盪器,並透過LC電路作耦合,共振腔電路使用兩個右手LC震盪電路,透過使用N型金氧半電晶體之交錯耦合對最為負阻抗,補償共振腔電路之損耗,改變共振腔電路可變電容之容值可使電路震盪頻率升降,電路供應電壓0.8 V,電路震盪於3.79 GHz時功耗為3.43 mW,相位雜訊在1 MHz時為-121.04 dBc/Hz,FOM為-187.1 dBc/Hz,當電路震盪於高頻帶,震盪頻率為6.03 GHz,功耗1.63 mW,相位雜訊在1 MHz時為-116.99 dBc/Hz,FOM為-190.2 dBc/Hz。

第三部分,介紹一個可切換之雙主頻率同時震盪壓控震盪器,電路主要架構為兩個N型金氧半電晶體之交錯耦合對使用串聯可調之LC共振腔,改變共振腔之可變電容容值大小可使電路震盪於高頻或低頻,透過改變控制電流之HBT基極偏壓,可使電路出現雙主頻率震盪之現象,電路供應電壓為0.7 V,電路功耗2.6 mW,高頻/低頻FOM為-192/-190 dBc/Hz,晶片使用台積電矽鍺0.18微米製程,晶片面積為1.04 ×0.55 mm2 。


In wireless communication system, frequency synthesizers are used to implement the frequency up/down converting of signal. In a frequency synthesizer, voltage-controlled oscillator (VCO) and divider are the key blocks. For VCOs, low phase-noise output is required to avoid corrupting the mixer-converted signal by close interfering tones. The output of the VCO is divided down by the frequency divider which requires operating at high frequencies, wide operating range and lower power consumption.

In chapter 4, we present a wide locking range divide by four injection lock frequency divider using five on chip inductors. The ILFD using a cross coupled voltage-controlled oscillator (VCO) with one direct injection MOSFET. The resonator using five on chip inductors. The chip was implemented in the tsmc 0.18 μm SiGe 3P6M BiCMOS process. The die area is 0.865 ×0.872 mm2. The dc gate bias of cross coupled FETs can be tuned for the tradeoff between locking range and power consumption. The core power consumption is 10.34 mW at supply voltage 1.1 V. At the incident power of 0 dBm the locking range is 4.7 GHz (38.68%) from 9.8 to 14.5 GHz.

In chapter 5, we present a voltage controlled concurrent oscillator. The chip was implemented in the tsmc 0.18 lm SiGe 3P6M BiCMOS process. The die area is 1.057 ×1.071 mm2. The concurrent oscillator using two VCOs coupled by an LC network. The VCO uses two units of right-handed (RH) LC resonator stacked in series, and the LC resonator is in shunt with a pair of cross-coupled transistors to compensate the loss of LC resonator. The supply voltage is 0.8 V. The high band oscillation frequency is 3.79 GHz and the power consumption is 3.43 mW. The phase noise at 1MHz frequency offset is -121.04 dBc/Hz, and FOM is -187.1 dBc/Hz. The low band oscillation frequency is 6.03 GHz and the power consumption is 1.63 mW. The phase noise at 1MHz frequency offset is -116.99 dBc/Hz, and FOM is -190.2 dBc/Hz.

In chapter 6, we present a concurrent oscillator with switching mode. The oscillator consists of two cross-coupled BiCMOS oscillators with shared series-tuned LC-tank. The series-tuned LC-tank plays the role in the oscillation frequency. By varying the tail transistor the concurrent oscillation occurs. The power consumption is 2.6 mW at supply voltage 0.7 V. The chip was implemented in the tsmc 0.18 lm SiGe 3P6M BiCMOS process. The die area is 1.04 ×0.55 mm2.

中文摘要 Abstract 誌謝 List of Content List of Figures List of Table Chapter1 Introdution 1.1 Research Background 1.2 Thesis Organization Chapter2 Overview of the Voltage-Controlled Oscillators 2.1 Basic Theory of Oscillators 2.2 Microwave Transistor Oscillation Conditions 2.2.1 Feedback Oscillators 2.2.2 one-port Negative-Resistance Oscillators 2.3 Classification of Oscillators 2.3.1 Ring Oscillator 2.3.2 LC-Tank Oscillator 2.4 RLC-Tank research 2.4.1 Quality Factor 2.4.2 Inductor and Transformer 2.4.3 Capacitors and Varactors 2.4.4 Resistors 2.5 Design Concepts of Voltage-Controlled Oscilator 2.5.1 Parameters of a Voltage-Controlled Oscilator 2.5.2 Phase Noise in Oscillator 2.5.3 Dual-Band VCO Design Chapter 3 Principles and Design Concepts of Injection Locking Frequency Divider 3.1 Principle Of Injection Locked Frequency Divider 3.2 Locking Range 3.3 Direct ILFD Chapter 4 Dual band Divide-by-4 Injection-Locked Frequency Divider Using 5 On-Chip Inductors 4.1 Introduction 4.2 Circuit Design 4.3 Measurement Results Chapter 5 Concurrent Voltage-Controlled Oscillator 5.1 Introduction 5.2 Circuit Design 5.3 Measurement Results Chapter 6 Study on Concurrent Oscillator with Mode Switching 6.1 Introduction 6.2 Circuit Design 6.3 Measurement Results Chapter 7 Conclusion

[1]B. Razavi, “RF Microelectronics”, Upper Saddle River, NJ: Prentice Hall, 1998
[2]N. M.Nguyen and R. G. Meyer, “Start-up and frequency stability in high-frequency oscillators,” IEEE J. Solid-State Circuit, vol. 27, no. 5, pp. 810–820, May 1992.
[3]B. Razavi, “Design of Analog CMOS Integrated Circuit”,Mc Graw Hill,2008.
[4]G. Gonzalez , “Microwave Transistor Amplifiers Analysis And Design” , Prentice Hall 1997
[5]B. Razavi , Design of Integrated Circuits for Optical Communications”, Mc Graw Hill.
[6]B. Razavi, “Design of Analog CMOS Integrated Circuits”, Mc Graw Hill, 2001.
[7]S.J. Lee, B. Kim, K. Lee, “A Novel High-Speed Ring Oscillator for Multiphase Clock Generation Using Negative Skewed Delay Scheme,” IEEE Journal of Solid-State Circuits, vol. 32, No. 2, February 1997.
[8]劉隽宇, 翁若敏, “運用於IEEE 802.11a CMOS 頻率合成器的低雜訊寬調變範圍之壓控振盪器,” 2005.07.
[9]李少華, 張勝良, “Implementation of New High Frequency CMOS VCOs and Injection-Locked Frequency Dividers,” 2007 04.
[10]A. Hajimiri, and T. H. Lee, “The design of low noise oscillators,” Kluwer Academic Publishers, 1999
[11]B. De Muer, M. Borremans, M.Steyaert, and G. Li Puma, “A 2GHz low-phase-noise integrated LC-VCO set with flicker-noise upconversion minimization,” IEEE J. Solid-State Circuits, vol. 35, pp. 1034-1038, 2000.

[12]S. Levantino, C. Samori, A. Bonfanti, S.L.J. Gierkink, A.L. Lacaita, and V. Boccuzzi, “frequency dependence on bias current in 5 GHz CMOS VCOs: impact on tuning range and flicker noise upconversion,” IEEE J. Solid-State Circuits, vol. 37, pp. 1003-1001, 2002.
[13]T. H. Lee, The Design of CMOS Radio Frequency Integrated Circuits, Cambridge University Press 1998.
[14]H. M. Greenhouse, “Design of planar rectangular microelectronic inductors,” IEEE Transactions on Parts, Hybrids, and Packaging, vol. 10, pp. 101-109, Jun 1974.
[15]J. Craninckx and M. S. J. Steyaert, “A 1.8 GHz low-phase-noise CMOS VCO using optimized hollow spiral inductors,” IEEE J. Solid-State Circuits, vol. 32, no. 5, pp. 736–744, May 1997.
[16]C. P. Yue, C. Ryu, JackLau, T. H. Lee, and S. Wong, “A physical model for planar spiral inductors on silicon,” 1996 International Electron Devices Meeting Technical Digest, pp. 155–158, Dec. 1996.
[17]J. R. Long, “Monolithic transformers for silicon RF IC design,” IEEE Journal of Solid-State Circuits, vol. 35, pp. 1368-1382, Sept. 2000.
[18]E. Frlan, S. Meszaros, M. Cuhaci, and J.Wight, “Computer-aided design of square spiral transformers and inductors,” in Proc. IEEE MTT-S, pp. 661-664, June 1989.
[19]P. Andreani, S. Mattisson, “On the use of MOS varactors in RF VCOs,” IEEE Journal of Solid-State Circuits, vol. 35, no. 6, pp. 905-910, June 2000.
[20]J. van der Tang, and D. Kasperkovitz, “Oscillator design efficiency: a new figure of merit for oscillator benchmarking,” IEEE International Symposium on Circuit and System (ISCAS), vol. 2, pp. 533-536, May 2000.
[21]J.J. Rael, and A. A. Abidi, “Physical processes of phase noise in differential LC oscillators,” IEEE Custom Integrated Circuits Conference, pp. 569–572, 2000.
[22]T. Lee and A. Hajimiri, “Oscillator phase noise: a tutorial,” IEEE J. Solid-State Circuits, vol. 35, no. 3, pp. 326–336, Mar. 2000.
[23]D. Leeson, “A simple model of feedback oscillator noise spectrum,” Proceedings of the IEEE, vol. 54, pp. 329–330, Feb. 1966.
[24]A. Hajimiri and T. H. Lee, “A general theory of phase noise in electrical oscillators,” IEEE J. Solid-State Circuits, vol. 33, no. 2, pp. 179–194, Feb. 1998.
[25]A. Hajimiri and T. H. Lee, “Design Issues in CMOS differential LC Oscillators,” IEEE J. Solid-State Circuits, vol. 34, pp. 717–724, May 1999.
[26]J. Craninckx and M. S. J. Steyaert, “A 1.75-GHz/3-V dual-modulus divide-by-128/ 129 prescaler in 0.7 um CMOS,” IEEE J. Solid-State Circuits, vol. 31, pp. 890-897, July 1996.
[27]Q. Huang and R. Rogenmoser, “Speed optimization of edge-triggered CMOS
circuits for gigahertz single-phase clocks,” IEEE J. Solid-State Circuits, vol. 31, pp. 456-463, Mar. 1996.
[28]J. Lee and B. Razavi, “A 40 GHz frequency divider in 0.18-um CMOS technology,” IEEE J. Solid-State Circuits, vol. 39, pp. 594-601, Apr. 2004.
[29]H. R. Rategh, and T.H. Lee, “Superharmonic injection-locked frequency dividers,” IEEE J. Solid-State Circuits, vol. 34, pp. 813-821, June 1999.
[30]H. D. Wohlmuth and D. Kehrer, “A high sensitivity static 2:1 frequency divider up to 27 GHz in 120 nm CMOS,” IEEE European Solid State Circuits Conference (ESSCIRC), pp. 823-826, Sept. 2002.
[31]M. Tiebout, “A 480 uW 2 GHz ultra low power dual-modulus prescaler in 0.25 um standard CMOS,” IEEE International Symposium on Circuit and System (ISCAS), vol. 5, pp. 741-744, May 2000.

[32]H. Wu, and A. Hajimiri, “A 19 GHz 0.5 mW 0.35 μm CMOS frequency divider with shunt-peaking locking-range enhancement,” IEEE ISSCC Dig. Tech. Papers, pp. 412-413, Feb. 2001.
[33]R. J. Betancourt-Zamora, S. Verma, and T. H. Lee, “1 GHz and 2.8 GHz CMOS injection- locked ring oscillator prescalers,” IEEE Symposium on VLSI Circuits, pp. 47-50, June 2001.
[34]P. Kinget, R. Melville, D. Long, and V. Gopinathan, “An Injection Locking
Scheme for Precision Quadrature Generation,” IEEE J. Solid-State Circuits, vol. 37, pp. 845-851, July 2002.
[35]W. Z. Chen, and C. L. Kuo, “18 GHz and 7 GHz superharmonic injection-locked dividers in 0.25pm CMOS technology,” IEEE European Solid State Circuits Conference (ESSCIRC), pp. 89-92, Sept. 2002.
[36]H. Wu, “Signal generation and processing in high-frequency/high-speed
silicon-based integrated circuits,” PhD thesis, California Institute of Technology, 2003.
[37]R. Adler, “A study of locking phenomena in oscillators,” Proc. IEEE, vol. 61, pp.1380-1385, Oct. 1973.
[38]S.-L. Jang, and C.-C. Fu. ” Wide locking range divide-by-4 LC-tank injection-locked frequency divider using series-mixers’, Analog Integr Circ Sig Process, vol. 78, issue 2, pp. 523–528, Feb. 2014., Feb. 2014
[39]C.-W. Chang and S.-L. Jang,,” A differential BiCMOS divide-by-4 injection-locked frequency divider,” Microw. Opt. Technol. Lett., vol. 54, pp.2825-2828, Dec., 2012.
[40]S. H. Lee, S. L. Jang, and Y. H. Chung, “A low voltage divide-by-4 injection locked frequency divider with quadrature outputs,” IEEE Microw.Wireless Compon. Lett., vol. 17, no. 5, pp. 373–375, May 2007.
[41]K. Yamamoto and M. Fujishima, “70 GHz CMOS harmonic injection locked divider,” in IEEE Int. Solid-State Circuits Conf. Dig.,pp. 2472–2481, Feb. 2006.
[42]S.-L. Jang, C.-H. Liu, C.-W. Chang, and M.-H. Juang," A low voltage, low power divide-by-4 LC-tank injection-locked frequency divider, " Int. J. Electronics., vol. 98,no. 4, pp. 521-527, April 2011.
[43]S.-L. Jang, Y.–T. Chang, C.-W. Hsue and M.-H. Juang, ” Wide-locking range divide-by-4 injection-locked frequency divider using injection MOSFET DC-biased above threshold region,” published online Int. J. Circuit Theory and Applications 2015.
[44]S.-L. Jang,C. C. Liu and C.-W. Chung,” A tail-injected divide-by-4 SiGe HBT injection locked frequency divider,” IEEE Microw. Wireless Compon. Lett., vol.19,no. 4,pp. 236-238, April 2009.
[45]S.-L. Jang, Hot Carrier Degradation in CMOS LC Injection-Locked Frequency Dividers, Goldenlight, ISBN:978-3-639-82345-5.
[46]B. Razavi, "A study of injection locking and pulling in oscillators," IEEE J. Solid-State Circuits, 39(9):1415-1424, Sept. 2004.
[47]S.-L.Jang, Z.-H. Wu, C.-W. Hsue and H.-F. Teng,” Wide-locking range dual-band injection-locked frequency dvider,” Microw. Opt. Technol. Lett. vol. 55, 10, pp. 2333–2337, October 2013.
[48]L. Wu, and H. C. Luong, ‘Analysis and design of a 0.6 V 2.2 mW 58.5-to-72.9 GHz divide-by-4 injection-Llcked frequency divider with harmonic boosting’, IEEE Trans. Circuits and Systems-Part I, Regular Papers, vol. 60, no. 8, pp. 2001-2007, Aug. 2013.
[49]I.T. Lee, C.-H. Wang, C.-L. Ko, Y.-Z. Juang, and S.-I. Liu,"A 3.6 mW 125.7–131.9 GHz divide-by-4 injection-locked frequency divider in 90 nm CMOS,” IEEE Microw.Wireless Compon. Lett., vol. 22, no. 3, pp. 132-134, March 2012.
[50]S.-L.Jang, Y.-J. Chen, C.-H. Fang and W.-C. Lai, ” Enhanced locking range technique for frequency divider using dual-resonance RLC resonator,” Electronics Letters ,vol. 51, no. 23, 05 Nov 2015, p. 1888 – 1889.
[51]S.-L. Jang, Y.-J. Song, and C.-C. Liu, ” A differential Clapp VCO in 0.13µm CMOS technology,” IEEE Microw. Wireless Compon. Lett., pp. 404-406, June, 2009.
[52]S. L. Jang, Y. K. Wu, C. C. Liu, and J. F. Huang, “A dual-band CMOS voltage-controlled oscillator implemented with dual-resonance LC tank,”IEEE Microw.and Wireless Compon.Lett., vol. 19, pp. 816-818, Dec. 2009.
[53]A. Yamagishi, T. Tsukahara, M. Harada, and J. A. Kodate, “A low-voltage 6-GHz-band CMOS monolithic LC-tank VCO using a tuning-range switching technique,” in Proc. IEEE MTT Symp., 2000, pp. 735–738.
[54]D. Wang, X. Wang, A. Eshraghi, D. Chang, and P. Bacon, “A fully integrated GSM/DCS/PCS Rx VCO with fast switching auto-band selection,” in Proc. IEEE Radio Wireless Conf., 2002, pp. 209–212.
[55]S.-M. Yim and K. K. O, “Switched resonators and their applications in a dual-band monolithic CMOS LC-tuned VCO,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 1, pp. 74–81, Jan. 2006.
[56]S. L. Jang, Y. H. Chuang, C. C. Chen, S. H. Lee and J. F. Lee, “A CMOS dual-band voltage controlled oscillator”, IEEE Asia Pacific Conf. Circuits and Systems, 2006, pp. 514 – 517, Dec.2006.
[57]S.-L. Jang, Y.-K. Wu, C.-C. Liu and J.-F. Huang, ” A dual-band CMOS voltage-controlled oscillator implemented with dual-resonance LC tank,” IEEE Microw. Wireless Compon. Lett., vol. 19, No. 12, pp.816-818, Dec. 2009.
[58]D. Baek, J. Kim, and S. Hong, “A dual-band (13/22-GHz) VCO based on resonant mode switching,” IEEE Microwave Wireless Compon Lett 13 (2003), 443–445.
[59]A. Hajimiri and T. Lee, “Design issues in CMOS differential LC oscillators,” IEEE J. Solid-State Circuits, vol. 34, no. 5, pp. 717–724, May 1999. .

無法下載圖示 全文公開日期 2021/08/13 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE