簡易檢索 / 詳目顯示

研究生: 劉浩維
Hao-Wei Liu
論文名稱: 多頻段鎖頻範圍與使用八字型電感之 除二注入鎖定除頻器設計
Design of Divide-by-2 Injection-Locked Frequency Dividers With Wide Multiband Locking Range and 8-Shaped Inductor
指導教授: 張勝良
Sheng-Lyang Jang
口試委員: 馮武雄
Wu-Shiung Feng
賴文政
Wen-Cheng Lai
宋峻宇
Jiun-Yu Sung
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 125
中文關鍵詞: 注入鎖定除頻器鎖定範圍八字型電感互感除二除頻器
外文關鍵詞: injection-locked frequency divider, locking range, 8-shaped inductor, ILFD, transformer
相關次數: 點閱:391下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在無線通訊系統中,頻率合成器扮演著重要的角色,其內部包含了相位偵測器(PFD)、充電幫浦(CP)、迴路濾波器(LF)、壓控振盪器(VCO)、除頻器(FD)。PLL組成子電路中又以壓控震盪器和注入鎖定除頻器特性最重要,所以本篇論文呈現出各種高性能注入鎖定除頻器(ILFD)的設計。

    首先,我們設計一個高性能寬頻除二注入鎖定除頻器(ILFD)。此除頻器使用台積電0.18 μm BiCMOS SiGe 製程,此 ILFD 使用互感耦合兩個諧振頻率,它由兩個子ILFD 透過互感耦合組成。此 ILFD 可以在二種鎖頻模式下運行。最佳的偏壓範圍條件產生較寬的鎖定範圍、低功耗和高品質效能因數。在2.1mW的功耗和0dBm的輸入功率下,鎖定範圍從5至9.7GHz(63.94%)為4.7GHz。此 ILFD 可以有兩個非重疊的鎖定範圍或重疊的鎖定範圍,這表明 ILFD 使用雙諧振諧振器。當兩組除二注入鎖定除頻器皆打開時,可以在低頻輸出端看見低頻和高頻鎖定範圍的重疊。因此設計的 ILFD 鎖定範圍可以達到3.8至9.7 GHz(87.4%)。 

    接著,設計一個新架構的除二ILFD,使用台積電0.18 μm BiCMOS SiGe 製程,此 ILFD 使用互感耦合三個諧振頻率,它由三個子ILFD 透過互感耦合組成。而依據主動元件的開關, ILFD 可以操作在三種獨立的鎖頻範圍。而此 ILFD 三組模式的輸出自振頻率分別為2.927 GHz, 3.348 GHz, and 5.422 GHz。

    最後,設計一個寬除頻範圍的的除二ILFD,使用台積電0.18 μm BiCMOS SiGe 製程,此 ILFD 使用八字型的電感,配上電感上的寄生電容形成 ILFD 的共振腔‧並使用兩組電容交叉耦合對來組成負阻抗,電容交叉耦合對中的主動元件閘極端偏壓可以用來調變 ILFD 的自振頻率。在2.064mW的功耗和0dBm的輸入功率下,鎖定範圍從3.7至7.8GHz(71.3%)為4.1GHz,FOM值為34.54。此 ILFD 在4dBm的輸入功率下,可以看到兩個分開的鎖頻範圍。此設計強調八字型電感與一般八角型電感相比,擁有更差的電感Q值,更適合用於ILFD設計上,可產生更寬的鎖頻範圍。論文的最後,結合第二段的高性能寬頻 ILFD 和此八字型電感,完成一個使用八字型互感搭配兩組主動電路的雙頻且寬鎖頻範圍 ILFD。


    Frequency synthesizer plays an important role of wireless communication system, its blocks include Phase Frequency Detector (PFD), Charge Pump (CP), Loop Filter (LF),Voltage Controlled Oscillator (VCO), and Frequency Divider (FD). In order to pursue low-power, low phase noise and wide Locking range of divider, so this thesis presents the design of high performance Injection-Locked Frequency Dividers (ILFDs).

    First, a high-performance wide-band divide-by-2 injection-locked frequency divider (ILFD) in the 0.18 μm BiCMOS SiGe process is presented. The ILFD uses transformer-coupled resonator with two resonant frequencies based on the lumped inductor model, and it consists of two sub-ILFDs coupled by inductive coupling. The ILFD can operate in two modes with overlapped locking ranges. The optimal bias condition yields wide locking range at low power with high figure of merit. At the power consumption of 2.1 mW and at the input power of 0 dBm, the locking range is 4.7 GHz(63.94%) from 5 GHz to 9.7 GHz. The ILFD can have two non-overlapped locking ranges or an overlapped locking range, this indicates the ILFD uses a dual-resonance resonator.

    Next, a new divide-by-2 injection-locked frequency divider (ILFD) in the 0.18 μm BiCMOS SiGe process. The ILFD uses transformer-coupled resonator with three resonant frequencies based on the lumped inductor model, and it consists of three sub-ILFDs coupled by inductive coupling. The ILFD can operate in three independent modes while one active core is turned on. The free-running oscillation frequencies are respectively 2.927 GHz, 3.348 GHz, and 5.422 GHz for the sub-ILFDs.

    Finally, a wide-band divide-by-2 injection-locked frequency divider (ILFD) in the 0.18 μm BiCMOS SiGe process. The ILFD uses an 8-shaped inductor in shunt with parasitic capacitors as the resonator, and it also uses two capacitive cross-coupled pairs to generate negative resistance for oscillation. The gate biases of capacitive cross-coupled pairs are used to tune the free-running ILFD oscillation frequency. At the power consumption of 2.064 mW and at the input power of 0 dBm, the locking range is 71.3% (4.1 GHz from 3.7GHz to 7.8GHz) and the FOM is 34.54. The ILFD can have two non-overlapped locking ranges at high injection power around 4 dBm. As compared to other ILFDs using octagonal inductors, the ILFD using an 8-shape coil has low EM radiation level and less sensitive to received EM noise.

    摘要 I Abstract III 誌謝 V Table of Contents VI List of Figures IX List of Tables XVI Chapter 1 Introduction 1 1.1 Background 1 1.2 Thesis Organization 3 Chapter 2 Principles and Design Considerations of Voltage Controlled Oscillators 5 2.1 Introduction 5 2.2 The Oscillators Theory 7 2.2.1 Feedback Oscillators (Two port) 7 2.2.2 Negative Resistance and Resonator (One port) 9 2.3 Category of Oscillators 12 2.3.1 Ring Oscillator 12 2.3.2 LC-Tank Oscillator 15 2.4 Passive Components Design in VCO 22 2.4.1 Capacitor Design 22 2.4.2 MOS Varactor Design 24 2.4.3 Inductor Design 28 2.4.4 Transformer Design 31 2.4.5 Resistor Design 36 2.5 The Basic parameters of VCO 37 2.5.1 RF Center Frequency [Hz] 37 2.5.2 RF Output Signal Power [dBm] 37 2.5.3 Power Dissipation [mW] 37 2.5.4 Harmonic/spurious [dBc] 38 2.5.5 Phase Noise [dBc/Hz] 38 2.5.6 Tuning Range [Hz] 41 2.5.7 Tuning Sensitivity [Hz/V] 42 2.5.8 Quality Factor 43 2.5.9 Figure of Merit 45 Chapter 3 Design of Injection Locked Frequency Divider 46 3.1 Principle of Injection Locked Frequency Divider 47 3.2 Locking Range 49 Chapter 4 Divide-by-2 Injection-Locked Frequency Dividers Exploiting the Dual-resonance in Concentric Transformer 52 4.1 Introduction 52 4.2 Circuit Design 54 4.3 Measurement and Discussion 56 Chapter 5 Divide-by-2 Injection-Locked Frequency Dividers Exploiting the Triple- resonance in Concentric Transformer 68 5.1 Introduction 68 5.2 Circuit Design 69 5.3 Measurement and Discussion 71 Chapter 6 Divide-by-2 Injection-Locked Frequency Divider Exploiting an 8-shaped Inductor 82 6.1 Introduction 82 6.2 Circuit Design 84 6.3 Measurement and Discussion 87 6.4 Advanced design 96 Chapter 7 Conclusions 98 References 100

    [1] B. Razavi, “RF Microelectronics”, Upper Saddle River, NJ: Prentice Hall, 1998
    [2] N. M. Nguyen and R. G. Meyer, “Start-up and frequency stability in high-frequency oscillators,” IEEE J. Solid-State Circuit, vol. 27, no. 5, pp. 810–820, May 1992.
    [3] S. Smith, Microelectronic Circuit 4th edition, Oxford University Press 1998.
    [4] B. Razavi, Design of Analog CMOS Integrated Crcuits, MC Graw Hall,2001.
    [5] P. Andreani, S. Mattisson, “On the use of MOS varactors in RF VCOs,” IEEE Journal of Solid-State Circuits, vol. 35, no. 6, pp. 905-910, June 2000.
    [6] B. Razavi, Design of Analog CMOS Integrated Circuits, Mc Graw Hill, 2001.
    [7] Y. K. Koutsoyannopoulos, and Y. Papananos, “Systematic analysis and modeling of integrated inductors and transformers in RF IC design,” IEEE Trans. Crcuits and System-II, vol. 47, no. 8, pp. 699-713, 2000.
    [8] A. Zolfaghari, A. Chan, and B. Razavi, “Stacked inductors and transformers in CMOS technology,” IEEE J. Solid-State Circuits, vol. 36, no. 4, pp. 620-628, 2001.
    [9] H. M. Greenhouse, “Design of planar rectangular microelectronic inductors,” IEEE Transactions on Parts, Hybrids, and Packaging, vol. 10, pp. 101-109, Jun 1974.
    [10] A. Hajimiri and T. H. Lee, “A general theory of phase noise in electrical oscillators,” IEEE J. Solid-State Circuits, vol. 33, no. 2, pp. 179−194, Feb. 1998.
    [11] J. J. Rael and A. A. Abidi, “Physical processes of phase noise in differential LC Oscillators,” IEEE Custom Integrated Circuits Conference, pp. 569−572, 2000.
    [12] T. Lee and A. Hajimiri, “Oscillator phase noise: a tutorial,” IEEE J. Solid-State Circuits, vol. 35, no. 3, pp. 326−336, Mar. 2000.
    [13] B. Razavi, Design of Analog CMOS Integrated Circuits, Mc Graw Hill, 2001.
    [14] T. H. Lee, The Design of CMOS Radio Frequency Integrated Circuits, Cambridge University Press 1998.
    [15] D. Hauspie, E.-C. Park, and J. Craninckx, “Wide-band VCO with simultaneous switching of frequency band, active core, and varactor size,” IEEE J. Solid-State Circuits, vol. 42, no. 7, pp. 1472–1480, Jul. 2007.
    [16] J. Craninckx and M. S. J. Steyaert, “A 1.75-GHz/3-V dual-modulus divide-by-128/ 129 prescaler in 0.7 um CMOS,” IEEE J. Solid-State Circuits, vol. 31, pp. 890-897, July 1996.
    [17] J. Craninckx and M. S. J. Steyaert, “A 1.75-GHz/3-V dual-modulus divide-by-128/ 129 prescaler in 0.7 um CMOS,” IEEE J. Solid-State Circuits, vol. 31, pp. 890-897, July 1996.
    [18] Q. Huang and R. Rogenmoser, “Speed optimization of edge-triggered CMOS circuits for gigahertz single-phase clocks,” IEEE J. Solid-State Circuits, vol. 31, pp. 456-463, Mar. 1996.
    [19] J. Lee and B. Razavi, “A 40-GHz frequency divider in 0.18μm CMOS technology,” IEEE J. Solid-State Circuits, vol. 39, pp. 594-601, Apr. 2004.
    [20] H. R. Rategh, and T.H. Lee, “Superharmonic injection-locked frequency dividers,” IEEE J. Solid-State Circuits, vol. 34, pp. 813-821, June 1999.
    [21] H. D. Wohlmuth and D. Kehrer, “A high sensitivity static 2:1 frequency divider up to 27 GHz in 120 nm CMOS,” IEEE European Solid State Circuits Conference (ESSCIRC), pp. 823-826, Sept. 2002.
    [22] M. Tiebout, “A 480 uW 2 GHz ultra low power dual-modulus prescaler in 0.25 um standard CMOS,” IEEE International Symposium on Circuit and System (ISCAS), vol. 5, pp. 741-744, May 2000.
    [23] H. Wu, and A. Hajimiri, “A 19 GHz 0.5 mW 0.35 μm CMOS frequency divider with shunt-peaking locking-range enhancement,” IEEE ISSCC Dig. Tech. Papers, pp. 412-413, Feb. 2001.
    [24] R. J. Betancourt-Zamora, S. Verma, and T. H. Lee, “1 GHz and 2.8 GHz CMOS injection- locked ring oscillator prescalers,” IEEE Symposium on VLSI Circuits, pp. 47-50, June 2001.
    [25] P. Kinget, R. Melville, D. Long, and V. Gopinathan, “An Injection Locking Scheme for Precision Quadrature Generation,” IEEE J. Solid-State Circuits, vol. 37, pp. 845-851, July 2002.
    [26] H. R. Rategh, and T.H. Lee, “Superharmonic injection-locked frequency dividers,” IEEE J. Solid-State Circuits, vol. 34, pp. 813-821, June 1999.
    [27] W. Z. Chen, and C. L. Kuo, “18 GHz and 7 GHz superharmonic injection-locked dividers in 0.25pm CMOS technology,” IEEE European Solid State Circuits Conference (ESSCIRC), pp. 89-92, Sept. 2002.
    [28] H. Wu, “Signal generation and processing in high-frequency/high-speed silicon based integrated circuits,” PhD thesis, California Institute of Technology, 2003.
    [29] R. Adler, “A study of locking phenomena in oscillators,” Proc. IEEE, vol. 61, pp.1380-1385, Oct. 1973.
    [30] C.-W. Chang, S.-L. Jang, C.-W. Huang, and C.-C. Shin, “Dual resonance LC-tank frequency divider implemented with switched varactor bias,” in Proc. IEEE Int.Symp. VLSI Design, Autom. Test, Apr. 2011, pp. 1–4.
    [31] S.-L. Jang, R.-K. Yang, C.-W. Chang, M.-H. Juang, and C.-C. Liu, ” Dual-band transformer-coupled quadrature injection-Locked frequency dividers,” Microw.Opt. Technol. Lett. , pp.1561-1564, July, 2011.

    [32] S.-L. Jang, C.-W. Chang, J.-Y. Wun, and M.-H. Juang, ” Quadrature injection locked frequency dividers using dual-resonance resonator,” IEEE Microw.Wireless Compon. Lett., vol. 21, no. 1, pp. 37-39, Jan. 2011.
    [33] N. Mahalingam, K. Ma, K. S. Yeo, and W. M. Lim, “Coupled dual LC tanks based ILFD with low injection power and compact size,” IEEE Microw. Wireless Compon. Lett., vol. 24, no. 2, pp. 105–107, Feb. 2014.
    [34] S.-L. Jang, X.-Y. Hang, and W.–T. Liu, ”Review: capacitive cross-coupled injection-locked frequency dividers,”Analog Integr Circ Sig Process, 88:97–104,2016.
    [35] Y. Chao, and H. C. Luong, “Analysis and design of wide-band millimeter-wave transformer-based VCO and ILFDs,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 63, no. 9, pp. 1416-1425, Sep. 2016.
    [36] S.-L. Jang, M.-H. Suchen, and C.-F. Lee ” Colpitts injection locked frequency divider implemented with a 3D helical transformer ,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 6, pp. 410-412, June, 2008.
    [37] S.-L. Jang, F.-H. Chen, and J.-F. Huang, ” A transformer-coupled LC-tank injection locked frequency divider,” Microw. Opt. Technol. Lett. Vol. 50, no. 3, pp.592-595, Mar. 2008.
    [38] S.-L. Jang, C.-C. Liu and C.-W. Tai, ” Implementation of 6-port 3D transformer in injection-locked frequency divider,” IEEE Int. VLSI- DAT, 2009.
    [39] J. Zhang, H. Liu, Y. Wu, C. Zhao, K. Kang, " Analysis and design of ultra- wideband mm-wave injection-locked frequency dividers using transformer-based high-order resonators,” IEEE J. Solid-State Circuits, 2018.

    [40] Y.-H. Lin, and H. Wang, “Design and analysis of W-band injection-locked frequency divider using split transformer-coupled oscillator technique,” IEEE Trans. Microw. Theory Techn., vol. 66, no. 1, pp. 177–186, Mar. 2018.
    [41] S.-L.Jang, Y.-J. Chen, C.-H. Fang and W. C. Lai, ” Enhanced locking range technique for frequency divider using dual-resonance RLC resonator,”Electron. Lett., vol. 51, 23, pp.1888-1889, 2015.
    [42] S.-L. Jang, W.-C. Cheng and C.-W. Hsue, ” Triple-resonance RLC-tank divide- by-2 injection-Locked frequency divider,” Electron. Lett., Vol. 52 No. 8 pp. 624–626, 2016.
    [43] S.-L. Jang, W.-C. Cheng and C.-W. Hsue, "Wide-locking range divide-by-3 Iniection-locked frequency divider using 6th-order RLC resonator," IEEE Trans.VLSI Syst., vol. 24, no. 7, pp.2598-2602, 2016.
    [44] S.-L. Jang, and C.-Y. Lin, ” A wide-locking range Class-C injection-locked frequency divider,” Electron. Lett., vol. 50, 23, pp.1710-1712, 2014.
    [45] S.-L. Jang, F.-B. Lin, and J.-F. Huang,” Wide-band divide-by-2 injection-locked frequency divider using MOSFET mixers DC-biased in subthreshold region,” Int.J. Circ Theor App, 43, 2081-2088, 2015.
    [46] C.-W. Chang, S.-L. Jang, C.-W. Huang, and C.-C. Shih, “Dual-resonance LC-tank frequency divider implemented with switched varactor bias,” IEEE Int. VLSI- DAT, pp. 1-4, 2011.
    [47] S.-L. Jang, Z.-H. Wu, C.-W. Hsue and H.-F. Teng, “Wide-locking range dual-band injection-locked frequency divider,” Microw. Opt. Technol. Lett. vol.55, 10, pp. 2333–2337, October 2013.

    [48] S.-L. Jang, C.-M. Chang and M.-H. Juang, ” Divide-by-2 injection-locked frequency divider implemented with two shunt 4th-order LC resonators,” Analog Integr Circ Sig Process, vol. 91, no. 3, pp. 377-383, 2017.
    [49] S. Lee, S. Jang, and C. Nguyen, “Low-power-consumption wide-locking-range dual-injection-locked 1/2 divider through simultaneous optimization of VCO loaded Q and current,” IEEE Trans.Microw.Theory Techn., vol. 60, no. 10, pp. 3161-3168, 2012.
    [50] S.-L. Jang, L.-Y. Huang, C.-W. Hsue, and J.-F. Huang, “Injection-locked frequency divider using injection mixer DC-biased in sub-threshold,” IEEE Microw. Wireless Compon. Lett., vol. 25, no. 3, pp. 193-195, 2015.
    [51] S.-L. Jang, and C.-F. Lee, “A wide locking range LC-tank injection locked frequency divider,” IEEE Microw. Wireless Compon. Lett., vol. 17, pp. 613-615, 2007.
    [52] Y.-H. Chuang, S.-H. Lee, R.-H. Yen, S.-L. Jang, J.-F. Lee and M.-H. Juang, “A wide locking range and low voltage CMOS direct injection-locked frequency divider,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 5, pp. 299-301, May 2006
    [53] O. Tesson, “High quality monolithic 8-shaped inductors for silicon RF IC design,” in IEEE SiRF, pp. 94-97, Jan. 2008.
    [54] N. M. Neihart, D. J. Allstot, M. Miller and P. Rakers, “Twisted inductors for low coupling mixed-signal and RF applications”, in Proc. 2008 of IEEE Custom Integrated Circuits Conference, San Jose, CA, pp. 575-578.
    [55] P.-Y. Wang et al., “A low phase-noise class-C VCO using novel 8-shaped transformer, ” in Proc. of ISCAS, pp. 889-889, May, 2015.
    [56] W. Zou, X. Zou, D. Ren, K. Zhang, D. Liu, Z. Ren , “2.49-4.91 GHz wideband VCO with optimized 8-shaped inductor,” Electron Lett., vol. 55, 55 – 57, 2019.
    [57] C. Durand et al., “Innovative 8-shaped inductors integrated in an advanced BiCMOS technology,” in IEEE SiRF, pp. 81-94, Jan. 2011.
    [58] Andrew Poon, Andrew Chen, Hirad Samavati, and S. Simon Wang “Reduction of inductive crosstalk using quadrupole inductors,” IEEE J. of Solid-State Circuits, vol. 44, no. 6, pp. 1756-1764, Jun. 2009.
    [59] G. Liu, P. Haldi, T. K. Liu, and A. M. Niknejad, ‘‘Fully integrated CMOS power amplifier with efficiency enhancement at power backoff,’’ IEEE J. Solid- State Circuits., vol. 43, no. 3, pp. 600–609, Mar. 2008
    [60] C. Zhao, B. Park, Y. Cho, and B. Kim, ‘‘Analysis and design of CMOS Doherty power amplifier using voltage combining method,’’ in Proc. IEEE Int. Wireless Symp. (IWS), Apr. 2013, pp. 1–4.
    [61] M. Tiebout, “A CMOS direct injection-locked oscillator topology as high-frequency low-power frequency divider,” IEEE J. Solid-State Circuits, vol. 39, no. 7, pp. 1170–1174, Jul. 2004.
    [62] N. Mahalingam, K. Ma, K. S. Yeo, and W. M. Lim, “Coupled dual LC tanks based ILFD with low injection power and compact size,” IEEE Microw. Wireless Compon. Lett., vol. 24, no. 2, pp. 105-107, Feb 2014.
    [63] S.-L. Jang, S.-S. Huang, J.-F. Lee and M.-H. Juang,” LC-tank Colpitts injection-locked frequency divider with record locking range,” IEEE Microw. Wireless Compon. Lett., pp.560-562, Aug. 2008.
    [64] H. R. Rategh and T. H. Lee, “Superharmonic injection-locked frequency dividers,” IEEE J. Solid-State Circuits, vol. 34, no. 6, pp. 813–821, June 1999.

    無法下載圖示 全文公開日期 2024/08/13 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE