簡易檢索 / 詳目顯示

研究生: 胡瑀梵
Yu-fan Hu
論文名稱: 以氟佈植處理之次微米低溫多晶矽P型薄膜電晶體特性改善研究
Performance Improvement on Sub-Micron LTPS P-Type TFTs using Fluorine Implantation Treatment
指導教授: 范慶麟
Ching-lin Fan
口試委員: 李志堅
Chih-chien Lee
張美濙
Mei-ying Chang
劉舜維
Shun-wei Liu
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 65
中文關鍵詞: 次微米氟佈植處理低溫多晶矽p型薄膜電晶體
外文關鍵詞: sub-micron, fluorine implantation treatment, LTPS p-type TFT
相關次數: 點閱:247下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文為次微米低溫多晶矽P型薄膜電晶體以氟佈植處理之特性改善研究。即利用犧牲氧化層阻擋氟佈植處理對通道的傷害,並當源極和汲極形成的同時,氟離子將堆積在通道的表面,以形成Si-F強鍵結,能夠抑制在次微米電晶體結構下的熱載子於汲極端的堆積及短通道效應;使得薄膜電晶體的電特性和穩定度皆有效地改善,尤其是載子移動率和電流比。

另外,我們發現一個論點,通道中的缺陷及通道的電阻值是影響元件導通電流的兩個因素。沒有氟佈植處理的通道,在不同通道厚度情況下的導通電流主要是被通道內的缺陷所影響;然而通道經過氟佈植處理後,因為通道內的大量缺陷已經被鈍化,此時導通電流則被通道層的電阻值所影響。


In this thesis, the performance improvement of the sub-micron LTPS p-type TFTs with the fluorine implantation treatment was investigated. The method of this thesis was that using the pad oxide prevents the damage of the channel surface while the channel was treated with the fluorine implantation. When the source and drain were activated, the fluorine ions will diffuse and accumulate at the channel interface. Then, due to the formation of the strong Si-F bonds, it would suppress the hot carrier multiplication near drain side and the short channel effect in the sub-micron LTPS p-type TFTs. Thus, the electrical characteristics and reliability of the proposed the sub-micron LTPS p-type TFTs were improved effectively, especially for field effect mobility and on/off current ratio.
Besides, we found an issue, the traps in the channel and the resistances of the channel were two factors which influence the on-current of the device. Without the fluorine implantation treatment, the traps in the channel layer would influence the on-current of the device for the different channel thickness. In contrast, after using fluorine implantation treatment, the resistances of the different channel layer would influence the on-current of the device because of the reduction of the traps in the channel.

論文摘要………………………………………………………I Abstract………………………………………………………II 圖目錄…………………………………………………………V 表目錄…………………………………………………………V 第一章 序論 …………………………………………………1 1.1研究背景 …………………………………………………1 1.2研究動機 …………………………………………………2 1.3論文大綱 …………………………………………………5 第二章 低溫多晶矽薄膜電晶體製作流程…………………6 第三章 氟離子佈植處理後的薄膜分析……………………15 3.1離子佈植的物理原理 …………………………………15 3.2氟佈植處理對通道層的影響分析………………………15 3.2.1氟佈植處理對通道層的表面粗糙度的影響……16 3.2.2氟佈植處理對氟驅入通道層程度的影響………17 第四章 元件的電性結果與討論……………………………24 4.1以氟佈植處理之次微米低溫多晶矽P型薄膜電晶體電性比較……24 4.1.1元件各項電性公式及結果分析…………………24 4.1.2活化能(Activation Energy)……………………28 4.1.3短通道效應(Short Channel Effect)…………29 4.2不同通道層厚度之低溫多晶矽P型薄膜電晶體電性分析 ………32 4.3氟佈植處理之低溫多晶矽P型電晶體可靠度的分析 ……………34 4.3.1熱載子效應(Hot-Carrier Effect)………………………34 4.3.2元件的劣化(Stress)………………………………………35 第五章 結論與未來工作……………………………………………51 參考文獻 ……………………………………………………………52

[1] C.H. Fa, and T.T. Jew, “The polysilicon insulated-gate field-effect transistor,” IEEE Transactions on Electron Devices, Vol. 13, pp. 290 (1966)
[2] W.G. Hawkins, “Polycrystalline-silicon device technology for large-area electronics,” IEEE Transactions on Electron Devices, Vol. 33, pp. 477-481 (1986)
[3] Y. Oana, “Current and future technology of low-temperature poly-Si TFT-LCDs,” Journal of the Society for Information Display, Vol. 9, pp. 169-172 (2001)
[4] Morozumi, K. Oguchi, S. Yazawa, Y. Kodaira, H. Ohshima, and T. Mano, “B/W and color LC video display addressed by poly-Si TFTs,” SID International Symposium (Society for Information Display), pp. 156-157 (1983)
[5] R.E. Proano, R.S. Misage, D. Jones, and D.G. Ast, “Guest-host active matrix liquid-crystal display using high-voltage polysilicon thin film transistors,” IEEE Transactions on Electron Devices, Vol. 38, pp. 1781-1786 (1991)
[6] C.L. Fan, and T. H. Yang, “Effects of NH3 Plasma Pretreatment before Crystallization on Low-Temperature-Processed Poly-Si Thin-Film Transistors,” Journal of The Electrochemical Society, Vol. 153, pp. H161-H165 (2006)
[7] J.H. Park, I.H. Song, and M.K. Han, “Low temperature short channel polycrystalline silicon thin film transistors with high reliability for flat panel display,” Thin Solid Films, Vol. 515, pp. 7402-7405 (2007)
[8] B. Iniguez, R. Picos, D. Veksler, A. Koudymov, M.S. Shur, T. Ytterdal, and W. Jackson, “Universal compact model for long- and short- channel Thin-Film transistors,” Solid-State Electronics, Vol. 52, pp. 400-405 (2008)
[9] H. Kuriyama et al., “Enlargement of poly-Si film grain size by excimer laser annealing and its application to high-performance poly-Si thin film transistor,” Japanese Journal of Applied Physics, Vol. 30, pp. 3700-3703 (1991)
[10] K. Nakamura, M. Hirata, and K. Yokota, “Annealing Effect on Enlargement of Grain Size in Nanocrystalline Silicon Films Deposited by Silicon Evaporation with Oxygen and Argon Radicals,” Japanese Journal of Applied Physics, Vol. 44, pp. 701-704 (2005)
[11] A. Nakamura, F. Emoto, E. Fujii, and A. Tamamoto, “A high-reliability, low-operation-voltage monolithic active-matrix LCD by using advanced solid-phase growth technique,” International Electron Devices Meeting, pp. 847 (1990)
[12] C.W. Chang, “Enhanced Performance and Reliability for Solid-Phase Crystallized Poly-Si TFTs with Argon Ion Implantation,” Journal of The Electrochemical Society, Vol. 154, pp. J375-J378 (2007)
[13] M.W. Ma, T.Y. Chiang, C.R. Yeh, T.S. Chao, and T.F. Lei, “Electrical Characteristics of High Performance SPC and MILC p-Channel LTPS-TFT with High-κ Gate Dielectric,” Electrochemical and Solid-State Letters, Vol. 12, pp. H361-H364 (2009)
[14] T. Sameshima, S. Usui, and M. Sekiya, “XeCl Excimer Laser Annealing Used in the Fabrication of Poly-Si TFTs,” IEEE Electron Device Letters , Vol. EDL-7, pp. 276-278 (1986)
[15] J.Y. kwon, H. Lim, K.B. Park, J.S. Jung, D.Y. Kim, H.S. Cho, S.P. Kim, Y.S. Park, J.M. Kim, and T. Nogughi, “A New Approach of Polycrystalline Silicon Film on Plastic Substrate Prepared by Ion Beam Deposition Followed by Excimer Laser Crystallization at Room Temperature,” Japanese Journal of Applied Physics, Vol. 45,pp. 4362-4364 (2006)
[16] M. Mitani, T. Endo, Y. Tanigughi, T. Katou, S. Shimoto, T. Ohno, S. Tsuboi, T. Okada, K. Azuma, G. Kawaghi, and M. Matsumura, “Ultrahigh-Performance Polycrystalline Silicon Thin-Film Transistors on Excimer-Laser-Processed Pseudo-Single-Crystal Films,” Japanese Journal of Applied Physics, Vol. 47, No. 12, pp. 8707-8713 (2008)
[17] C.L. Fan, and M.C. Chen, “Performance Improvement of Excimer Laser Annealed Poly-Si TFTs Using Fluorine Ion Implantation,” Electrochemical and Solid-State Letters, Vol. 5, pp. G75-G77 (2002)
[18] C.W. Chang, C.K. Deng, S.C. Wu, J.J. Huang, H.R. Chang, and T.F. Lei, “Characterizing Fluorine-Ion Implant Effects on Poly-Si Thin-Film Transistors With Pr2O3 Gate Dielectric,” Journal of display technology, Vol. 4, No. 2, pp. 173-179 (2008)
[19] M.W. Ma, C.Y. Chen, C.J. Su, W.C. Wu, Y.H. Wu, T.Y. Yang, K.H. Kao, T.S. Chao, and T.F. Lei, “Impacts of Fluorine Ion Implantation With Low-Temperature Solid-Phase Crystallized Activation on High-κ LTPS-TFT,” IEEE Electron Devices Letters, Vol. 29, No. 2, pp.168-170 (2008)
[20] C.W. Chang, P.W. Huang, C.K. Deng, J.J. Huang, H.R. Chang, and T.F. Lei, “CF4-Plasma-Induced Fluorine Passivation Effects on Poly-Si TFTs with High-κ Pr2O3 Gate Dielectric,” Journal of The Electrochemical Society, Vol. 155, pp. J50-J54 (2008)
[21] W.R Chen, T.C Chang, P.T Liu, C.J Wu, C.H Tu, S.M. Sze, and C.Y Chang, “Passivation Effect of Poly-Si Thin-Film Transistors With Fluorine-Ion-Implanted Spacers,” IEEE Electron Devices Letters, Vol. 29, No. 6, June (2008)
[22] C.F. Weng, T.C. Chang, Y.H. Tai, S.T. Huang, K.T. Wue, C.W. Chen, W.C. Kuo, and T.F. Young, “Thermal analysis on thedegradation of poly-silicon TFTs under AC stress,” Materials Chemistry and Physics, Vol. 116, pp. 344-347 (2009)
[23] S.H. Choi, S.J. Kim, Y.G. Mo, H.D. Kim, and M.K. Han, “Positive Shift of Threshold Voltage in Short-Channel(L = 1.5 贡m) p-Type Polycrystalline Silicon Thin-Film Transistor under Off-State Bias Stress,” Japanese Journal of Applied Physics, Vol. 48, p. 03B011 (2010)
[24] S.H. Choi, S.J. Kim, Y.G. Mo, H.D. Kim, and M.K. Han, “Reliability in short-channel p-Type Polycrystalline Silicon Thin-Film Transistor under High Gate and Drain Bias Stress,” Japanese Journal of Applied Physics, Vol. 49, p. 03CA04 (2010)
[25] A. Valletta, P. Gaucci, L. Mariucci, and G. Fortunato, “Kink effect in short-channel polycrystalline silicon thin-film transistors,” Applied Physics Letters, Vol. 85, No. 15, pp. 3113-3115 (2004)
[26] A. Valletta, P. Gaucci, L. Mariucci, and G. Fortunato, “Modelling velocity saturation and kink effects in p-channel polysilicon thin-film transistors,” Thin Solid Films, Vol. 515, pp. 7417-7421 (2007)
[27] S.M. Sze, “Semiconductor devices physics and technology 2rd edition”
[28] M.H. Juang, I.S. Tsai, and S.L. Jang, “The formation of polycrystalline-Si thin film transistors with a thinned channel layer,” Semicond. Sci. Technol., Vol. 23, p. 105003 (2008)
[29] M.H. Juang, C.W. Chang, J.L. Wang, D.C. Shye, C.C. Hwang, and S.L. Jang, “Study of polycrystalline-Si thin-film transistors with different channel layer thickness at low bias voltage,” Microelectronic Engineering, Vol. 87, pp. 1986-1900 (2010)
[30] M.H. Juang, Y.S. Peng, D.C. Shye, C.C. Hwang, and J.L. Wang, “Effects of channel layer thickness on the electrical characteristics of top-gate staggered microcrystalline-Si thin film transistors,” Microelectronic Engineering, Vol. 88, pp. 1582-1585 (2011)
[31] D.C. Moschou, F.V. Farmakis, D.N. Kouvatsos, and A.T. Voutsas, “Vg,max -Vth: A new electrical characterization parameter reflecting
the polysilicon film quality of LTPS TFTs,” Microelectronic Engineering, (2010)
[32] C.H. Tu, T.C. Chang, P.T. Liu, C.Y. Yang, L.W. Feng, Y.C. Wu, S.M. Sze, and C.Y. Chang, “Performance enhancement of excimer laser crystallized poly-Si thin film transistors with fluorine implantation technology,” Thin Solid Films, Vol. 516, pp. 3128-3132 (2008)
[33] J. Levinson, F.R. Shepherd, P.J. Scanlon, W.D. Westwood, G. Este, and M. Rider, “Conductivity behavior in polycrystalline semiconductor thin film transistors,” Journal of Applied Physics, Vol. 53, No. 2, pp. 1193–1202 (1982)
[34] R.E. Proano, R.S. Misage, and D.G. Ast, “Development and electrical properties of undoped polycrystalline silicon thin-film transistor,” IEEE Transactions on Electron Devices, Vol. 36, pp. 1915–1922 (1989)
[35] C.H. Tu, T.C. Chang, P.T. Liu, C.H. Chen, C.Y. Yang, Y.C. Wu, H.C. Liu, L.T.Chang, C.C. Tsai, S.M. Sze, and C.Y. Chang, “Electrical Enhancement of SolidPhase Crystallized Poly-Si Thin-Film Transistors with Fluorine Ion Implantation,” Journal of The Electrochemical Society, Vol. 153, pp. G815-G818 (2006)
[36] M. Hack, A.G. Lewis, and I.W. Wu, “Physical models for degradation effects in polysilicon thin-film transistors,” IEEE Transactions on Electron Devices, Vol. 40, pp. 890–897 (1993)

無法下載圖示 全文公開日期 2016/07/28 (校內網路)
全文公開日期 本全文未授權公開 (校外網路)
全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
QR CODE