簡易檢索 / 詳目顯示

研究生: 蔡佩君
Pei-Chun Tsai
論文名稱: 以三氯甲基矽烷為前驅物在Si(111)碳化晶片上製備碳化矽緩衝層之研究
Study on the Preparation of SiC Buffer Layer on Si(111) Carbide Substrate Using Trichloromethylsilane as a Precursor
指導教授: 洪儒生
Lu-Sheng Hong
口試委員: 黃智方
Chih-Fang Huang
江志強
Jyh-Chiang Jiang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 66
中文關鍵詞: 表面碳化碳化矽緩衝層超高真空化學氣相沉積乙炔三氯甲基矽烷
外文關鍵詞: Si(111), surface carbonization, SiC buffer layer, UHV-CVD, acetylene, methyltrichlorosilane
相關次數: 點閱:238下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文使用兩個連續程序,在配備即場式X射線光電子能譜儀(XPS)和反射式高能電子衍射儀(RHEED)的超高真空化學氣相沉積(UHV-CVD)系統中,進行矽晶片(Si(111))的表面碳化和 SiC 緩衝層之生長。首先,使用低溫即可裂解的乙炔為碳化氣體,發現於700K下Si(111)表面經乙炔壓力4 × 10^-5 torr、10分鐘處理後已形成約一個單層的碳化矽,之後的乙炔稍微的過度暴露即會在造成碳核析出於矽晶表面,造成表面粗糙化。考慮矽晶表面隨碳化進行時矽原子會因漸被碳化層覆蓋而難以擴散至表面的現象,我們改採用乙炔暴露量漸減的方式碳化Si(111),發現在700K的基材溫度下,以 15 分鐘內漸減乙炔(C2H2)暴露量由 6 × 10^−5 torr降至零的操作,可以獲得原子級平坦且厚度約1.5 單層的SiC(111)碳化表面。接下來在較高的975 K溫度下通入單一分子先驅物-甲基三氯矽烷1 × 10^−4 torr 持續 10 分鐘的劑量可成功地將高品質的表面SiC(111)碳化矽層緩衝延伸至1 ~ 2 nm。


    This thesis employs two sequential processes in an ultra-high vacuum chemical vapor deposition (UHV-CVD) system equipped with in-situ X-ray photoelectron spectroscopy (XPS) and reflection high-energy electron diffraction (RHEED) to carry out surface carbonization of silicon wafers (Si(111)) and the growth of SiC buffer layers. Initially, acetylene (C2H2) that readily dissociates at low temperature is used as the carbonization gas. It was found that at 700K and under C2H2 pressure of 4 × 10^-5 torr, after 10 minutes of treatment, approximately one monolayer of silicon carbide (SiC) has formed on the Si(111) surface. Subsequently, excessive exposure to C2H2 causes carbon nucleation on the silicon surface, resulting in surface roughening.
    Considering that during carbonization, silicon atoms on the Si(111) surface are gradually covered by the carbonized layer, making it difficult for them to diffuse to the surface, a method of gradually reducing C2H2 exposure is adopted for Si(111) carbonization. It was found that at a substrate temperature of 700K, by reducing C2H2 exposure from 6 × 10^−5 torr to zero over 15 minutes, an atomically flat surface with a thickness of approximately 1.5 monolayers of SiC(111) can be obtained.
    Next, at a higher temperature of 975K, the introduction of a single molecular precursor - methyltrichlorosilane, with a dose of 1 × 10^−4 torr for 10 minutes, successfully extends the high-quality SiC(111) carbonized silicon layer as a buffer layer to 1 ~ 2 nm thickness.

    目錄 摘要 I Abstract IV 致謝 V 目錄 VI 圖目錄 IX 表目錄 XII 第一章 緒論 1 1.1 前言 1 1.2 研究動機和目的 3 第二章 文獻回顧 5 2.1 氮化鎵材料 5 2.1.1 氮化鎵材料特性 5 2.1.2 氮化鎵晶圓製備困境 7 2.2 碳化矽基氮化鎵(GaN-on-SiC)和矽基氮化鎵(GaN-on-Si)技術 8 2.2.1 碳化矽基板特性 8 2.2.2 矽基氮化鎵(GaN-on-Si) 8 2.3 碳化矽緩衝層(GaN-on-SiC/Si)技術 10 2.3.1 製備碳化矽緩衝層目的 10 2.3.2 Si(111)低溫表面碳化 11 2.3.3 製備3C-SiC 緩衝層 12 2.4 本實驗室先前之實驗數據:Si(100)表面碳化 13 第三章 實驗方法與設備 14 3.1 實驗材料 14 3.2 實驗設備 16 3.2.1 超高真空化學氣相沉積系統(UHV-CVD system) 16 3.2.2 表面碳化反應實驗設備 17 3.2.3 生長碳化矽緩衝層實驗設備 17 3.3 實驗程序 19 3.3.1 Si(111)基材製備 19 3.3.2 Si(111)基材表面碳化程序 20 3.3.3 碳化矽緩衝層製備程序 21 3.4 分析儀器 23 3.4.1 X射線光電子能譜儀(X-ray Photoelectron Spectroscopy, XPS) 23 3.4.2 反射式高能電子衍射儀(Reflection High-energy Electron Diffraction, RHEED) 25 3.4.3 原子力顯微鏡(Atomic Force Microscope, AFM) 26 3.4.4 多角度全光譜橢圓偏振技術(Variable Angle Spectroscopic Ellipsometry, VASE) 27 第四章 結果與討論 28 4.1 甲基三氯矽烷(MTS)於藍寶石(sapphire)基板表面反應動力學之探討 28 4.2 SiC 緩衝層的 MTS-UHVCVD 33 4.3 Si(111)基材表面碳化反應製程優化 38 4.3.1 Si(111)改變溫度條件之表面碳化結果 38 4.3.2 Si(111)改變乙炔壓力之表面碳化結果 41 4.3.3 Si(111)最佳條件表面碳化結果 44 4.4 在優化表面碳化的 Si(111) 上生長 SiC 緩衝層 46 第五章 結論 49 第六章 參考文獻 50

    (1) Keshmiri, N.; Wang, D.; Agrawal, B.; Hou, R.; Emadi, A. Current Status and Future Trends of GaN HEMTs in Electrified Transportation. IEEE Access 2020, 8, 70553-70571. DOI: 10.1109/access.2020.2986972.
    (2) Cittanti, D.; Vico, E.; Bojoi, I. R. New FOM-Based Performance Evaluation of 600/650 V SiC and GaN Semiconductors for Next-Generation EV Drives. IEEE Access 2022, 10, 51693-51707. DOI: 10.1109/access.2022.3174777.
    (3) Shin, H.; Jeon, K.; Jang, Y.; Gang, M.; Choi, M.; Park, W.; Park, K. Comparison of the microstructural characterizations of GaN layers grown on Si (111) and on sapphire. Journal of the Korean Physical Society 2013, 63 (8), 1621-1624. DOI: 10.3938/jkps.63.1621.
    (4) Jian, J.; Sun, J. A Review of Recent Progress on Silicon Carbide for Photoelectrochemical Water Splitting. Solar RRL 2020, 4 (7). DOI: 10.1002/solr.202000111.
    (5) Nakata, J. S. D. R. S. C. 採用增强型矽基氮化鎵功率場效應電晶體(eGaN® FET). 2020.https://epcco.com/epc/tw/%E8%A8%AD%E8%A8%88%E6%94%AF%E6%8F%B4/%E6%87%89%E7%94%A8%E7%AD%86%E8%A8%98/an003-using-enhancement-mode (accessed 2023.
    (6) Jahid Chowdhury Choton, A. B., Jibesh Kanti Saha. Design and Characterization of 2DEG Structure of a
    Gallium Nitride HEMT. In 2019 International Conference on Robotics,Electrical and Signal Processing Techniques (ICREST), 2019.
    (7) Intelligence, Y. ACCELERATED ADOPTION OF RF GAN DEVICES FOR TELECOM INFRASTRUCTURE, ALONG WITH NEW OPPORTUNITIES FOR GAN-ON-SI TECHNOLOGY, WILL PUSH GAN RF TO $2.7B BY 2028; 2023.
    (8) Porowski, S.; Sadovyi, B.; Gierlotka, S.; Rzoska, S. J.; Grzegory, I.; Petrusha, I.; Turkevich, V.; Stratiichuk, D. The challenge of decomposition and melting of gallium nitride under high pressure and high temperature. Journal of Physics and Chemistry of Solids 2015, 85, 138-143. DOI: 10.1016/j.jpcs.2015.05.006.
    (9) Chen, K. J.; Haberlen, O.; Lidow, A.; Tsai, C. l.; Ueda, T.; Uemoto, Y.; Wu, Y. GaN-on-Si Power Technology: Devices and Applications. IEEE Transactions on Electron Devices 2017, 64 (3), 779-795. DOI: 10.1109/ted.2017.2657579.
    (10) Czochralski method - Wikipedia. https://en.wikipedia.org/wiki/Czochralski_method (accessed 2023.
    (11) Amano, H.; Sawaki, N.; Akasaki, I.; Toyoda, Y. Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer. Applied Physics Letters 1986, 48 (5), 353-355. DOI: 10.1063/1.96549.
    (12) Zhang, Y. Comparison Between Competing Requirements of GaN and
    SiC Family of Power Switching Devices. In IOP Conf. Series: Materials Science and Engineering, Paper 012004, 2020.
    (13) Cheng, Z.; Liang, J.; Kawamura, K.; Zhou, H.; Asamura, H.; Uratani, H.; Tiwari, J.; Graham, S.; Ohno, Y.; Nagai, Y.; et al. High thermal conductivity in wafer-scale cubic silicon carbide crystals. Nat Commun 2022, 13 (1), 7201. DOI: 10.1038/s41467-022-34943-w From NLM PubMed-not-MEDLINE.
    (14) Aksamija, Z.; Knezevic, I. Thermal conductivity of Si1−xGex/Si1−yGeysuperlattices: Competition between interfacial and internal scattering. Physical Review B 2013, 88 (15). DOI: 10.1103/PhysRevB.88.155318.
    (15) Rodriguez, M.; Zhang, Y.; Maksimovic, D. High-Frequency PWM Buck Converters Using GaN-on-SiC HEMTs. IEEE Transactions on Power Electronics 2014, 29 (5), 2462-2473. DOI: 10.1109/tpel.2013.2279212.
    (16) Boles, T. GaN-on-Silicon Present Challenges and Future Opportunities. In the 12th European Microwave Integrated Circuits Conference21, 2017.
    (17) Liu, A. C.; Tu, P. T.; Langpoklakpam, C.; Huang, Y. W.; Chang, Y. T.; Tzou, A. J.; Hsu, L. H.; Lin, C. H.; Kuo, H. C.; Chang, E. Y. The Evolution of Manufacturing Technology for GaN Electronic Devices. Micromachines (Basel) 2021, 12 (7). DOI: 10.3390/mi12070737 From NLM PubMed-not-MEDLINE.
    (18) Jarndal, A.; Arivazhagan, L.; Nirmal, D. On the performance of GaN‐on‐Silicon, Silicon‐Carbide, and Diamond substrates. International Journal of RF and Microwave Computer-Aided Engineering 2020, 30 (6). DOI: 10.1002/mmce.22196.
    (19) Mantach, R.; Vennéguès, P.; Perez, J. Z.; De Mierry, P.; Leroux, M.; Portail, M.; Feuillet, G. Semipolar (10-11) GaN growth on silicon-on-insulator substrates: Defect reduction and meltback etching suppression. Journal of Applied Physics 2019, 125 (3). DOI: 10.1063/1.5067375.
    (20) A. Dadgar, M. P., J. Bläsing, O. Contreras , F. Bertram , T. Riemann, A. Reiher, M. Kunze, I. Daumiller, A. Krtschil, A. Diez, A. Kaluza, A. Modlich, M. Kamp, J. Christen, F.A. Ponce, E. Kohn, A. Krost. MOVPE growth of GaN on Si(1 1 1) substrates. Journal of Crystal Growth 2003, 248, 556-562.
    (21) Chien-Hsian Chao, H.-C. C., Hsiang-Chun Wang, Chia-Hao Liu, Chong Rong Haung, Chih-Tien Chen, Kuo-Jen Chang Improved RF Characteristics of AlGaN/AlN/GaN HEMT by using 3C-SiC/Si Substrate In CS MANTECH Conference, 2022.
    (22) Kim, K. C.; Park, C. I.; Roh, J. I.; Nahm, K. S.; Hahn, Y. B.; Lee, Y.-S.; Lim, K. Y. Mechanistic study and characterization of 3C-SiC (100) grown on Si (100). Journal of The Electrochemical Society 2001, 148 (5), C383.
    (23) M. De Crescenzi, M. M., R. Gunnella a, P. Castrucci, M. Casalboni, G. Dufour, F. Rochet. Si1−xCx formation by reaction of Si(111) with acetylene: growth mode, electronic structure and luminescence investigation. Surface Science 1999, 426 (3), 277-289.
    (24) Hu, M. S.; Hong, L. S. Surface carbonization of Si(111) by C2H2 and the subsequent SiC(111) epitaxial growth from SiH4 and C2H2. Journal of Crystal Growth 2004, 265 (3-4), 382-389. DOI: 10.1016/j.jcrysgro.2004.02.022.
    (25) 周冠宏. 以甲基三氯矽烷為前驅物化學氣相沉積β相碳化矽薄膜的成長機構之研究. 國立台灣科技大學化學工程研究所, 2022.
    (26) 章筱瑜. 矽晶基材的表面碳化轉化成碳化矽過程之研究. 國立台灣科技大學化學工程研究所, 2022.
    (27) Nassim Derriche, S. G., Rysa Greenwood, Alejandro Mercado, Ashley Nicole Warner. Reflection High-Energy Electron Diffraction. 2019.
    (28) Grosvenor, A. P.; Cavell, R. G.; Mar, A. Next-nearest neighbour contributions to P 2p3/2 X-ray photoelectron binding energy shifts of mixed transition-metal phosphides M1−xM′xP with the MnP-type structure. Journal of Solid State Chemistry 2007, 180 (10), 2702-2712. DOI: 10.1016/j.jssc.2007.07.027.
    (29) Geng, H.; Li, S.; Pan, Y.; Yang, Y.; Zheng, J.; Gu, H. Porous Fe3O4 hollow spheres with chlorine-doped-carbon coating as superior anode materials for lithium ion batteries. RSC Advances 2015, 5 (65), 52993-52997. DOI: 10.1039/c5ra09915c.
    (30) Czekaj, I.; Loviat, F.; Raimondi, F.; Wambach, J.; Biollaz, S.; Wokaun, A. Characterization of surface processes at the Ni-based catalyst during the methanation of biomass-derived synthesis gas: X-ray photoelectron spectroscopy (XPS). Applied Catalysis A: General 2007, 329, 68-78. DOI: 10.1016/j.apcata.2007.06.027.
    (31) Santoni, A.; Frycek, R.; Castrucci, P.; Scarselli, M.; De Crescenzi, M. XPS and STM study of SiC synthesized by acetylene and disilane reaction with the Si(100)2×1 surface. Surface Science 2005, 582 (1-3), 125-136. DOI: 10.1016/j.susc.2005.03.010.
    (32) Wei, J.; Kim, K.; Liu, F.; Wang, P.; Zheng, X.; Chen, Z.; Wang, D.; Imran, A.; Rong, X.; Yang, X.; et al. β-Ga2O3 thin film grown on sapphire substrate by plasma-assisted molecular beam epitaxy. Journal of Semiconductors 2019, 40 (1). DOI: 10.1088/1674-4926/40/1/012802.
    (33) Susanto, I.; Tsai, C. Y.; Ho, Y. T.; Tsai, P. Y.; Yu, I. S. Temperature Effect of van der Waals Epitaxial GaN Films on Pulse-Laser-Deposited 2D MoS(2) Layer. Nanomaterials (Basel) 2021, 11 (6). DOI: 10.3390/nano11061406 From NLM PubMed-not-MEDLINE.
    (34) Adongo, J. Modification of Surfaces with Carboxymethylthio and Piperazinyl Chelating Ligands for Heavy Metal Trapping Applications. 2019.
    (35) Fukushima, Y.; Hotozuka, K.; Shimogaki, Y. Multiscale Analysis of Silicon Carbide-Chemical Vapor Deposition Process. Journal of Nanoscience and Nanotechnology 2011, 11 (9), 7988-7993. DOI: 10.1166/jnn.2011.5073.
    (36) Appendix C: Major Physical Properties of Common SiC Polytypes. In Fundamentals of Silicon Carbide Technology, 2014; pp 521-524.
    (37) Murdick, R. A.; Raman, R. K.; Murooka, Y.; Ruan, C.-Y. Photovoltage dynamics of the hydroxylated Si(111) surface investigated by ultrafast electron diffraction. Physical Review B 2008, 77 (24). DOI: 10.1103/PhysRevB.77.245329.

    QR CODE