簡易檢索 / 詳目顯示

研究生: 林政綱
LIN,CHENG-KANG
論文名稱: 試驗廠級乙酸異丙酯反應蒸餾程序啟動策略與擾動排除指引之研究
Startup Procedure of Isopropyl Acetate Reactive Distillation in Pilot-Scale Plant and Operating Guidance of Disturbance Rejection
指導教授: 李豪業
Hao-Yeh Lee
口試委員: 余柏毅
Bor-Yih Yu
曾堯宣
Yao-Hsuan Tseng
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 154
中文關鍵詞: 反應蒸餾開俥模式預測控制
外文關鍵詞: Reactive Distillation, Startup, Model Predictive Control
相關次數: 點閱:712下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

摘要
反應蒸餾係指結合蒸餾塔之熱分離技術及流入塔內之進料化學反應以達成連續反應的單元操作,優勢在克服平衡限制、提高轉化率、降低能耗需求及減少設備及操作成本等。然而,蒸餾塔啟動實為化工產業極為複雜的動態程序,過程中耗時且耗能。本研究利用異丙醇反應蒸餾合成乙酸異丙酯作為標的,並使用商業軟體Aspen Plus®及滲透蒸發薄膜設計產品(異丙酯)濃度達99.5 wt%且不純物(水)低於0.1 wt%之規格要求,同時建立一套反應蒸餾─滲透蒸發啟動手法,藉由在臺科大化工系建置反應蒸餾試驗廠來驗證實驗與模擬結果以及呈現系統對擾動排除之表現。
基於相同反應蒸餾啟動手法,本研究探討以三種不同初始填料方式:醋酸/異丙醇進料比、穩態餘料及純醋酸做最佳啟動策略比較,結果顯示,凝液罐內填入醋酸/異丙醇進料比或純醋酸,啟動時間將耗費6小時以上,而以穩態餘料用作填料能於2小時內完成啟動且可大幅減少啟動時間及節省填料。此外,針對側流產品端於343.15 K至383.15 K進料溫度下作薄膜滲透蒸發通量與產品濃度影響之分析,其結果得出進料溫度在363.15 K以上即能將含水率降低至0.1 wt%並得出高純度99.5 wt%乙酸異丙酯產品。
本實驗研究亦使用Matlab/Simulink®建立類神經網路模型(Artificial Neural Network, ANN)來探討智能操作指引與傳統PID控制對製程產能擾動控制之差異,並透過離線式虛擬模型給予試驗廠操作指引來強化實驗操作結果。比較傳統PID控制下於擾動過程中產品濃度將降低至90 wt%,結果顯示使用者經智能操作指引提供之擾動後溫度建議設定值進行每5、15、30分鐘調動,乙酸異丙酯產品濃度控制仍可比傳統PID控制佳,而相比15及30分鐘調動需長時間排除擾動,最後以每5分鐘調動可於2小時內穩定製程並維持產品濃度99 wt%之操作為最佳控制。


Abstract
Reactive distillation (RD) is a process which combined separation and chemical reaction in a one unit to improve the conversion of reaction and energy-saving; however, the startup of distillation column is a time- and energy-consuming process and is one of the most complex operations in the chemical industry. In this study, esterification of isopropanol (IPA) by using RD is the target process to demonstrate the startup operation and also show the performance of disturbance rejection in the normial operating condition. Furthermore, isopropyl acetate (IPAc) is purified to 99.5 wt% and less than 0.1 wt% H2O is required as specifications via reactive distillation−pervaporation hybrid process and startup instruction is established experimentally in the pilot-scale plant.
There are three different initial charge strategies in RD optimal startup procedure: (1) the feed ratio, (2) residue and (3) pure acetic acid. According to the results, the residue in the sump could be minimized the startup period about 2 hrs and the others would be taken over 6 hrs to finish startup operation. Moreover, pervaporation (PV) has been studied to remove impurity (water) below 0.1 wt% and examined under different feed temperature from 343.15 K to 383.15 K. Finally product could be met 99.5 wt% and less than 0.1 wt% H2O as specifications over 363.15 K.
In this work, the artificial neural network (ANN) built by Matlab/Simulink® is taken to compare with conventional PID control performance under the throughput changes. After the disturbances, the offline virtual model could provide the track setpoints of temperature controller (TIC-07) for the users. In the different operating change frequencies(5、15、30 mins), it shows that product would be maintained at the high purity after the disturbances while operators adjusting the setpoints in five-min period.

目錄 誌謝 I 摘要 II Abstract III 目錄 IV 圖目錄 VII 表目錄 XIII 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 5 1.2.1 蒸餾塔啟動 5 1.2.2 反應蒸餾啟動 8 1.2.3 高階製程控制應用於蒸餾系統 13 1.3 研究動機與目的 15 1.4 組織章節 15 第二章 反應蒸餾─薄膜系統啟動程序 16 2.1 前言 16 2.2 實驗設備 16 2.3 反應蒸餾穩態程序設計及描述 19 2.3.1 反應蒸餾區設計介紹 19 2.3.2 非勻相觸媒設計介紹 24 2.4 反應蒸餾區啟動程序 25 2.4.1 蒸餾塔啟動前程序 25 2.4.2 蒸餾塔開俥程序 25 2.4.3 反應蒸餾穩態程序 26 2.4.4 蒸餾塔停俥程序 27 2.4.5 蒸餾塔緊急停俥程序 27 2.4.6 氣相層析步驟 30 2.5 薄膜滲透蒸發程序及描述 32 2.5.1 薄膜脫水區設計介紹 32 2.6 薄膜脫水區啟動程序 33 2.6.1 薄膜初始填料 33 2.6.2 薄膜開俥程序 34 2.6.3 滲透蒸發穩態程序 34 2.6.4 薄膜停俥程序 36 2.6.5 薄膜緊急停俥程序 36 2.6.6 卡式庫侖法步驟 36 第三章 試驗廠開俥啟動實驗 38 3.1 前言 38 3.2 實驗裝置 38 3.2.1 填充反應蒸餾區 38 3.2.2 資料採集與監控系統 41 3.3 反應蒸餾啟動結果 44 3.3.1 初始填料策略A ─ 醋酸及異丙醇進料比 45 3.3.2 初始填料策略B ─ 穩態餘料 50 3.3.3 初始填料策略C ─ 純醋酸 55 3.3.4 實驗總結果分析 60 3.4 滲透蒸發實驗結果 62 3.4.1 滲透蒸發 62 3.4.2 進料溫度影響 63 3.5 觸媒酸洗 69 3.5.1 熱重分析實驗 69 3.5.2 強酸陽離子型觸媒再生 70 第四章 擾動排除指引實驗 74 4.1 前言 74 4.2 PID控制擾動實驗 74 4.2.1 產能擾動增加10 % 74 4.2.2 產能擾動減少10 % 79 4.3 智能操作指引擾動實驗 83 4.3.1 高階製程控制下產能擾動增加10 % (5分鐘) 85 4.3.2 高階製程控制下產能擾動減少10 % (5分鐘) 90 4.3.3 高階製程控制下產能擾動增加10 % (15分鐘) 95 4.3.4 高階製程控制下產能擾動減少10 % (15分鐘) 100 4.3.5 高階製程控制下產能擾動增加10 % (30分鐘) 105 4.3.6 高階製程控制下產能擾動減少10 % (30分鐘) 110 4.4 結果與討論 115 第五章 結論與未來展望 117 5.1 結論 117 5.2 未來展望 118 參考文獻 120 附錄 127

參考文獻
【English】
1. Abdulwahab, G., & Süleyman, K. (2012a). Decoupling model predictive control of a reactive packed distillation column. international Journal of Advances in Science and Technology, 4(6), 39-51.
2. Abdulwahab, G., & Süleyman, K. (2012b). Modeling and simulation of a reactive packed distillation column using delayed neural networks. Chaotic Modeling and Simulation, 1, 101-108.
3. Arulalan, G. R., & Deshpande, P. B. (1987). Simplified model predictive control. Industrial & engineering chemistry research, 26(2), 347-356.
4. Backhaus, A. A. (1921). U.S. Patent No. 1,400,849. Washington, DC: U.S. Patent and Trademark Office.
5. Benz, S. J., & Scenna, N. J. (1997). The influence of different models in obtaining multiple solutions in distillation columns. The Canadian Journal of Chemical Engineering, 75(6), 1142-1152.
6. Bhatia, S., Ahmad, A. L., Mohamed, A. R., & Chin, S. Y. (2006). Production of isopropyl palmitate in a catalytic distillation column: Experimental studies. Chemical engineering science, 61(22), 7436-7447.
7. Bock, H., Wozny, G., & Gutsche, B. (1997). Design and control of a reaction distillation column including the recovery system. Chemical Engineering and Processing: Process Intensification, 36(2), 101-109.
8. Cutler, C. R., & Ramaker, B. L. (1980). Dynamic matrix control – a computer control algorithm. In joint automatic control conference (No. 17, p. 72).
9. Domingues, T. L., Secchi, A. R., & Mendes, T. F. (2010). Overall efficiency evaluation of commercial distillation columns with valve and dualflow trays. AIChE journal, 56(9), 2323-2330.
10. Forner, F., Brehelin, M., Rouzineau, D., Meyer, M., & Repke, J. U. (2008). Startup of a reactive distillation process with a decanter. Chemical Engineering and Processing: Process Intensification, 47(11), 1976-1985.
11. Gadewar, S. B., Malone, M. F., & Doherty, M. F. (2002). Feasible region for a countercurrent cascade of vapor‐liquid CSTRS. AIChE journal, 48(4), 800-814.
12. Ganguly, S., & Saraf, D. N. (1993). Startup of a distillation column using nonlinear analytical model predictive control. Industrial & engineering chemistry research, 32(8), 1667-1675.
13. Gani, R., Ruiz, C. A., & Cameron, I. T. (1986). A generalized model for distillation columns—I: Model description and applications. Computers & chemical engineering, 10(3), 181-198.
14. Hayden, J. G., & O'Connell, J. P. (1975). A generalized method for predicting second virial coefficients. Industrial & Engineering Chemistry Process Design and Development, 14(3), 209-216.
15. Henry, Z. K. (1990). Distillation Operation. New York: McGraw-Hill Education.
16. Horsley, L. H. (1973). Azeotropic data-III. Advance in Chemistry, (116).
17. Hung, S. B., Lee, M. J., Tang, Y. T., Chen, Y. W., Lai, I. K., Hung, W. J., ... & Yu, C. C. (2006). Control of different reactive distillation configurations. AIChE Journal, 52(4), 1423-1440.
18. Kalman, R. E. (1960a). Contributions to the theory of optimal control. Bulletin de la Societe Mathematique de Mexicana, 5, 102-119.
19. Kalman, R. E. (1960b). A new approach to linear filtering and prediction problems. Transactions of ASME, J. Basic Eng., 87, 35-45.
20. Khaledi, R., & Young, B. R. (2005). Modeling and model predictive control of composition and conversion in an ETBE reactive distillation column. Industrial & Engineering Chemistry Research, 44(9), 3134-3145.
21. Kruse, C., Fieg, G., & Wozny, G. (1996). A new time-optimal strategy for column startup and product changeover. Journal of Process Control, 6(2-3), 187-193.
22. Löwe, K., Li, P., & Wozny, G. (2000). Development and Experimental Verification of a Time‐optimal Startup Strategy for a High Purity Distillation Column. Chemical Engineering & Technology: Industrial Chemistry‐Plant Equipment‐Process Engineering‐Biotechnology, 23(10), 841-845.
23. Lai, I. K., Hung, S. B., Hung, W. J., Yu, C. C., Lee, M. J., & Huang, H. P. (2007). Design and control of reactive distillation for ethyl and isopropyl acetates production with azeotropic feeds. Chemical Engineering Science, 62(3), 878-898.
24. Lai, I. K., Liu, Y. C., Yu, C. C., Lee, M. J., & Huang, H. P. (2008). Production of high-purity ethyl acetate using reactive distillation: experimental and start-up procedure. Chemical Engineering and Processing: Process Intensification, 47(9-10), 1831-1843.
25. Liu, W. T., & Tan, C. S. (2001). Liquid-phase esterification of propionic acid with n-butanol. Industrial & engineering chemistry research, 40(15), 3281-3286.
26. Lu, Y. C., Chen, Z. L., & Lee, H. Y. (2017). Optimal start-up strategies for a conventional distillation column using simulated annealing. Chemical Engineering Transactions, 61, 901-906.
27. Malshe, V. C., & Sujatha, E. S. (1997). Regeneration and reuse of cation-exchange resin catalyst used in alkylation of phenol. Reactive and Functional Polymers, 35(3), 159-168.
28. Manivannan, R. G., Mohammad, S., McCarley, K., Cai, T., & Aichele, C. (2019). A New Test System for Distillation Efficiency Experiments at Elevated Liquid Viscosities: Vapor–Liquid Equilibrium and Liquid Viscosity Data for Cyclopentanol+ Cyclohexanol. Journal of Chemical & Engineering Data, 64(2), 696-705.
29. Mäki-Arvela, P., Salmi, T., Sundell, M., Ekman, K., Peltonen, R., & Lehtonen, J. (1999). Comparison of polyvinylbenzene and polyolefin supported sulphonic acid catalysts in the esterification of acetic acid. Applied Catalysis A: General, 184(1), 25-32.
30. Patwardhan, A. A., & Edgar, T. F. (1993). Nonlinear model predictive control of a packed distillation column. Industrial & engineering chemistry research, 32(10), 2345-2356.
31. Qin, S. J., & Badgwell, T. A. (1997, June). An overview of industrial model predictive control technology. In AIChE Symposium Series (Vol. 93, No. 316, pp. 232-256). New York, NY: American Institute of Chemical Engineers, 1971-c2002.
32. Qiu, T., Zhang, P., Yang, J., Xiao, L., & Ye, C. (2014). Novel procedure for production of isopropanol by transesterification of isopropyl acetate with reactive distillation. Industrial & Engineering Chemistry Research, 53(36), 13881-13891.
33. Reepmeyer, F., Repke, J. U., & Wozny, G. (2003). Analysis of the start-up process for reactive distillation. Chemical Engineering & Technology, 26(1), 81-86.
34. Reepmeyer, F., Repke, J. U., & Wozny, G. (2004). Time optimal start-up strategies for reactive distillation columns. Chemical Engineering Science, 59(20), 4339-4347.
35. Ruiz, C. A., Cameron, I. T., & Gani, R. (1988). A generalized dynamic model for distillation columns—III. Study of startup operations. Computers & chemical engineering, 12(1), 1-14.
36. Sanz, M. T., & Gmehling, J. (2006). Esterification of acetic acid with isopropanol coupled with pervaporation. Part II. Study of a pervaporation reactor. Chemical Engineering Journal, 123(1-2), 9-14.
37. Sanz, M. T., & Gmehling, J. (2006). Esterification of acetic acid with isopropanol coupled with pervaporation: Part I: Kinetics and pervaporation studies. Chemical Engineering Journal, 123(1), 1-8.
38. Scenna, N. J., Ruiz, C. A., & Benz, S. J. (1998). Dynamic simulation of start-up procedures of reactive distillation columns. Computers & chemical engineering, 22, S719-S722.
39. Singh, A. P., & Nikolaou, M. (2013). Control of a process with unmeasured disturbances that change its steady-state gain sign. Journal of Process Control, 23(3), 294-305.
40. Tang, Y. T., Chen, Y. W., Huang, H. P., Yu, C. C., Hung, S. B., & Lee, M. J. (2005). Design of reactive distillations for acetic acid esterification. AIChE Journal, 51(6), 1683-1699.
41. Wang, J., Leng, Y., Shao, H., Li, W., Xue, B., Huang, C., ... & Chen, T. (2015). A fundamental model for valve tray vapor cross‐flow channeling calculation. AIChE Journal, 61(3), 1032-1042.
42. Wang, S. J., Chen, W. Y., Chang, W. T., Hu, C. C., & Cheng, S. H. (2014). Optimal design of mixed acid esterification and isopropanol dehydration systems via incorporation of dividing-wall columns. Chemical Engineering and Processing: Process Intensification, 85, 108-124.
43. Werle, L. O., Marangoni, C., Steinmacher, F. R., de Araújo, P. H., Machado, R. A., & Sayer, C. (2009). Application of a new startup procedure using distributed heating along distillation column. Chemical Engineering and Processing: Process Intensification, 48(11-12), 1487-1494.
44. Wozny, G., & Li, P. (2004). Optimisation and experimental verification of startup policies for distillation columns. Computers & chemical engineering, 28(1-2), 253-265.
45. Yun, C. H., Prasad, R., & Sirkar, K. K. (1992). Membrane solvent extraction removal of priority organic pollutants from aqueous waste streams. Industrial & engineering chemistry research, 31(7), 1709-1717.
46. Zhang, B. J., Yang, W. S., Hu, S., Liang, Y. Z., & Chen, Q. L. (2013). A reactive distillation process with a sidedraw stream to enhance the production of isopropyl acetate. Chemical Engineering and Processing: Process Intensification, 70, 117-130.
47. Zhao, X. P., & Huang, R. Y. M. (1990). Pervaporation separation of ethanol–water mixtures using crosslinked blended polyacrylic acid (PAA)–nylon 66 membranes. Journal of applied polymer science, 41(9‐10), 2133-2145.

【中文】
1. 林河木, "以反應蒸餾綠色程序回收異丙醇之相平衡與反應動力研究",行政院國家科學委員會專題研究計畫成果報告, 2006.
2. 林瀚淵, 2007石化工業年鑑, 經濟部ITIS專案辦公室, 臺北市, 2007.
3. 吳榮宗, 黃銘郁, 林建琛, & 張仁俊, "耐水酸性離子液體在酯化反應之應用研究", 石油季刊, vol. 47, no. 3, pp. 1-17, 2011.
4. 陳登鑑, 陳泰翔, 巫柔誼, & 黃耀輝, "以滲透蒸發技術分離醇類水溶液技術之研究”, 鑛冶: 中國鑛冶工程學會會刊, no. 223, pp. 93-103, 2013.
5. 黃秀芳, 陳憲鴻, & 洪正宗, "從實驗室到工場-觸媒評估技術在工業上的應用”, 化學, vol. 71, no. 1, pp. 83-92, 2013.
6. 陳姿伶, "應用模擬退火法進行普通蒸餾程序最適啟動研究”, 碩士論文, 化學工程系, 國立臺灣科技大學, 臺北市, 2014.
7. 洪有信, "醋酸甲酯與醋酸丁酯反應蒸餾程序最適啟動策略研究”, 碩士論文, 化學工程系, 國立臺灣科技大學, 臺北市, 2015.
8. 曾惠馨, 王敬婷, & 江建楷, "碳分子篩選薄膜簡介及其於清潔能源之應用”, 化工, vol. 62, no. 5, pp. 37-49, 2015.
9. 李昇育, "複合式薄膜反應蒸餾製程於醋酸酯類系統之應用”, 碩士論文, 化學工程學研究所, 國立臺灣大學, 臺北市, 2016.
10. 秦紅霞, 馮芳, 杜麗麗, 張強, 江海洋, 高婷婷, & 吳月, "多孔聚苯乙烯的構築與表徵”, 齊魯工業大學學報, vol. 30, no. 2, pp. 41-44, 2016.
11. 陳建穎, "使用類神經網路及模式預測控制於乙酸異丙酯反應蒸餾製程之控制研究”, 碩士論文, 化學工程系, 國立臺灣科技大學, 臺北市, 2019.
12. 薛宇玲, "使用非均相觸媒Amberlyst 39之乙酸異丙酯合成反應動力行為研究”, 碩士論文, 化學工程系, 國立臺灣科技大學, 臺北市, 2019.

【網頁】
1. 行政院環境保護署環境資源資料庫重點事業廢棄物-有機廢液之處理方式網頁,
https://erdb.epa.gov.tw/DataRepository/Other/LITTER_ORG_WASTE.aspx
2. 行政院環境保護署清除處理機構服務管理資訊系統廢棄物處理費用查詢網頁,
https://wcds.epa.gov.tw/WCDS/Anonymous/TreCostSearch.aspx
3. 原物料行情網頁,
https://just2.entrust.com.tw/z/ze/zeq/zeqa_D0170010.djhtm

無法下載圖示 全文公開日期 2025/01/17 (校內網路)
全文公開日期 2025/01/17 (校外網路)
全文公開日期 2025/01/17 (國家圖書館:臺灣博碩士論文系統)
QR CODE