簡易檢索 / 詳目顯示

研究生: 鄒秉佑
Bing-You Zou
論文名稱: 應用反應萃取於水合反應產生叔丁醇之製程設計與控制
Design and Control of a tert-Butyl Alcohol Hydration Process via Reactive Extraction Configuration
指導教授: 李豪業
Hao-Yeh Lee
口試委員: 錢義隆
I-Lung Chien
曾堯宣
Yao-Hsuan Tseng
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 103
中文關鍵詞: 反應萃取反應蒸餾共沸蒸餾丁烯叔丁醇水合反應
外文關鍵詞: Reactive extraction, Reactive distillation, Azeotropic distillation, Butene, tert-butyl alcohol, Hydration
相關次數: 點閱:212下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 原油為不可再生之資源,隨著全球經濟發展,原油需求量不斷上升。為了永續發展之目的,各種新型態的化工製程因應而生。本研究嘗試結合反應器與萃取塔,達到總能耗下降及降低年總成本之目的。
    研究上,以異丁烯加水產生叔丁醇之水合反應為範例,進行反應萃取程序之模擬並與反應蒸餾程序比較。於反應萃取程序中,考量進料中可能含有正丁烯,也同時進行含正丁烯之反應萃取程序之模擬。穩態模擬結果顯示,反應萃取程序在不需要提供能源的條件即可達到高轉化率,但受限於液液相平衡,分離段中需要較多之成本。整體而言,反應萃取程序於節能與減少年總成本方面皆有較好之表現,分別可以節省 26.0 %及16.1 %。
    於動態模擬中,利用含正丁烯之反應萃取程序設計控制架構。不同於一般萃取塔,反應萃取塔包含化學反應與液液分相,因此於庫存控制環路中提出三種控制架構 (Inventory A~ C),針對化學計量平衡、液液相平衡與考慮兩者之情況進行討論。於品質控制環路中,由於單點溫度控制於C1蒸餾塔無法有效的排除擾動,利用雙點溫度控制則可以改善動態擾動之結果。結果顯示利用雙點溫度控制搭配Inventory C 為本研究最佳的控制架構。


    Crude oil is a non-renewable resource, The demand of crude oil continuously increases, as the global economic development. For the purpose of sustainable development and minimize production costs of the chemical industry, different types of chemical processes are developed. This study attempts to combine the reactor and the extraction process to reduce energy consumption and total annual cost.
    In the research, the reactive extraction in hydration of tert-butyl alcohol is demonstrated and compared with reactive distillation. The feed may contain impurity, like n-butene, so reactive extraction with n-butene is also demonstrated. The reactive extraction can achieve high conversion without energy. In constrain of liquid-liquid equilibrium, the higher cost of the separation section is required. The steady state simulation result shows the reaction extraction can save 26.0 % energy consumption and 16.1 % total annual cost, respectively.
    In process dynamics, the reactive extraction with n-butene is used to demonstrate. Since the reactive extraction column contains chemical reaction and liquid-liquid separation. Three inventory control loops (Inventory A~C) are studied to maintain stoicmetric balance, liquid-liquid equilibrium and both situations. In the quality control loop, using two temperature control loop in column C1 is better than one temperature control loop. The dynamic result shows that the best control structure is two temperature control loop in column C1 with inventory C.

    致謝 I 摘要 II Abstract III 目錄 IV 圖目錄 VI 表目錄 IX 1. 緒論 1 1.1 前言 1 1.2 文獻回顧 5 1.3 研究動機與目的 12 1.4 組織章節 13 2. 熱力學及動力學模式 14 2.1 前言 14 2.2 熱力學模式 14 2.3 動力學模式 21 3. 穩態設計 24 3.1 前言 24 3.2 不含正丁烯之叔丁醇反應蒸餾程序 24 3.2.1 不含正丁烯之反應蒸餾設計概念 24 3.2.2 反應蒸餾塔之設計與最適化 27 3.2.3 分離部份之設計與最適化 32 3.2.4 反應蒸餾程序最適化結果 36 3.3 不含正丁烯之叔丁醇之反應萃取程序 41 3.3.1 不含正丁烯之反應萃取設計概念 41 3.3.2 不含正丁烯之反應萃取程序之設計 43 3.3.3 不含正丁烯之反應萃取程序之設計結果 47 3.3.4 反應萃取程序與反應蒸餾程序之比較 52 3.4 含正丁烯之叔丁醇之反應萃取程序 56 3.4.1 含正丁烯之反應萃取設計概念 56 3.4.2 含正丁烯之反應萃取程序之設計 58 3.4.3 含正丁烯之反應萃取程序之設計結果 61 4. 動態設計 66 4.1 前言 66 4.2 庫存控制環路設計 66 4.3 品質控制環路設計 71 4.4 動態控制架構之結果 75 4.4.1 系統所承受的干擾 75 4.4.2 CS1A控制架構之結果 75 4.4.3 CS2A控制架構之結果 80 4.4.4 不同庫存控制環路於CS2之比較 83 5. 結論 92 6. 未來展望 94 參考文獻 95 附錄一 汽液相平衡圖(續) 97 附錄二 年總成本計算公式 98 附錄三 控制器參數調諧方法 99 附錄四 反應萃取塔反應量分布 100 附錄五 各控制架構之產品出料流量 101

    [1] Anastas, P.T., Zimmerman, J.B., Design through the Twelve Principles of Green Engineering, Env. Sci. and Tech., 37, 5, 94-101. (2003)
    [2] Caceres, E., Puigjaner, L., Recasens F., A Trickle-bed Process for Hydration of Isobutene to Tert-Butyl Alcohol: a Study of Reactor Performance. The Chemical Engineering Journal, 37, 43 – 52. (1988)
    [3] Chemat, F., Vian, M.A, Cravotto, G., Green Extraction of Natural Products: Concept and Principles. Int. J. Mol. Sci. 13, 8615-8627. (2012)
    [4] Douglas, J. M., Conceptual Design of Chemical Processes, McGraw-Hill, New York, USA. (1998).
    [5] Dellon, A., Torck, B., Hellln, M., Equilibrium Constant for the Liquid-Phase Hydration of Isobutylene over Ion-Exchange Resin. Ind. Eng. Chem. Process Des. Dev. 25, 889-893. (1988)
    [6] Garcia Jurado, M.B., Plesu, V., Bonet Ruiz, J., Bonet Ruiz, A.E., Tuluc, A., Llorens Llacuna, J., Simulation of a Hybrid Reactive Extraction Unit. Biodiesel Synthesis. Chemical Engineering Transactions, 35, 205–210. (2013)
    [7] Hao, J., Xu, F., Liu, H., Liu, D., Downstream Processing of 1,3-propanediol Fermentation Broth. J Chem Technol Biotechnol, 81, 102 – 108. (2006)
    [8] Hynynen, K., Uusi-Kyyny, P., Pokki, J. P., Pakkanen, M., Aittamaa, J. J., Isothermal Vapor Liquid Equilibrium for 2-Methylpropene + Methanol, + 1-Propanol, + 2-Propanol, + 2-Butanol, and + 2-Methyl-2-propanol Binary Systems at 364.5 K. Chem. Eng. Data, 51, 562-568. (2006)
    [9] International Energy Aegency, Oil Market Report, (2005-2015)
    [10] Imam, R.A., Freund, H., Guit, R.P.M., Fellay, C., Meier, R.J., Sundmacher, K., Evaluation of Different Process Concepts for The Indirect Hydration of Cyclohexene to Cyclohexanol. Org. Process Res. Dev, 17, 343−358. (2013)
    [11] Luyben, W.L. and Yu, C.C, Reactive Distillation Design and Control. John Wiley & Sons, Inc., New Jersey, USA. (2008)
    [12] Malinowski, J.J., Reactive Extraction for Downstream Separation of 1,3-Propanediol. Biotechnol. Prog., 16, 76−79. (2000)
    [13] Miyano, Y., Nakanishi, K., Solubilities of 1-butene in (methanol + benzene) and (methanol + cyclohexane) at T=298.15 K and p=40 kPa to 102 kPa. J. Chem. Thermodyn., 35, 519-528. (2003)
    [14] Pfeuffer, B., Kunz, U., Hoffmann U., Turek, T., Hoell, D., Heterogeneous Reactive Extraction for An Intensified Alcohol Production Process, Catalysis Today, 147, 357–361. (2009)
    [15] Renker, W., Thesis, University of Leipzig, Leipzig, GDR, (1969)
    [16] Samant K.D., and Ng K.M., Synthesis of Extractive Reaction Processes AIChE J., Vol. 44, No. 6, 1363-1381.(1998)
    [17] Turton, R.; Bailie, R. C.; Whiting, W. B.; Shaelwitz, J. A. Analysis, Synthesis, and Design of Chemical Processes, 3rd ed.; Prentice Hall: Upper Saddle River, NJ. (2009)
    [18] Velo, E., Puigjaner, L., Recasens F., Inhibition by Product in the Liquid-Phase Hydration of Isobutene to Tert-butyl Alcohol: Kinetics and Equilibrium Studies. Ind. Eng. Chem. Res., 27, 2224-2231. (1988)
    [19] Visuri, O., Uusi-Kyyny, P., Pokki, J.P., Pakkanen, M., Alopaeus, V., Vapor-Liquid Equilibrium for 1-Butene + Methanol, + 1-Propanol, + 2-Propanol, + 2-Butanol, and 2-Methyl-2-propanol (TBA) at 364.5 K J. Chem. Eng. Data, 53, 1829-1835. (2008)
    [20] Wang, H., Yang, B., Measurement of Isobaric Vapor-Liquid Equilibrium Data for the System of Ether-Alcohol-Water. Huaxue Gongcheng, 30, 8-57. (2002)
    [21] Yu, H., Ye, Q., Xu ,H., Zhang, H., Dai, X., Design and Control of Dividing-Wall Column for tert-Butanol Dehydration System via Heterogeneous Azeotropic Distillation, Ind. Eng. Chem. Res., 54, 3384−3397. (2015)
    [22] Zhang, C.M., Adesina, A.A., Wainwright, M.S., Isobutene hydration over Amberlyst-15 in a slurry reactor. Chemical Engineering and Processing ,42 , 985-991. (2003)

    QR CODE